A FIXED POINT APPROACH TO THE STABILITY OF QUARTIC LIE *-DERIVATIONS

DONGSEUNG KANG AND HEEJEONG KOH*

ABSTRACT. We obtain the general solution of the functional equation $f(ax + y) - f(x - ay) + \frac{1}{2}a(a^2 + 1)f(x - y) + (a^4 - 1)f(y) = \frac{1}{2}a(a^2 + 1)f(x + y) + (a^4 - 1)f(x)$ and prove the stability problem of the quartic Lie *-derivation by using a directed method and an alternative fixed point method.

1. Introduction

A mapping is said to be *stable* if a mapping is an almost-homomorphism, there exists a true homomorphism near the almost-homomorphism. Ulam introduced the stability problem for functional equations which concerned the stability of group homomorphisms, thai is, given two groups Gand H, is every almost-homomorphism $G \to H$ close to a true homomorphism $G \to H$?; see [17]. Hyers [7] investigated stability problems related to the question of Ulam on Banach spaces. Subsequently, the result of Hyers was generalized by a number of authors. In particular, Aoki [1] studied the stability problem for additive mapping and Rassias [14] proved the problem for linear mappings by considering a unbounded Cauchy difference operator. Afterwards, the result of Rassias has provided a lot of influence in the development of what we call Hyers-Ulam stability or Hyers-Ulam-Rassias stability. The stability problems of this

Received May 2, 2016. Revised October 31, 2016. Accepted September 1, 2016. 2010 Mathematics Subject Classification: 39B55, 39B72, 47B47, 47H10.

Key words and phrases: Hyers-Ulam stability; quartic mapping; Lie *-derivation; Banach *-algebra; fixed point alternative.

^{*} Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

topic have been investigated by a number of authors; see [10], [8], [2] and [3]. In fact, the stability problems have been extensively investigated to the various points of views such as various functional equations, various spaces and so on. Especially, Jang and Park [9] introduced the concepts of *-derivations and investigated the stability problems of quadratic *-derivations on Banach C^* -algebra. Also, Park and Bodaghi and Yang et al. studied the stability properties of *-derivations by using an alternative fixed point method; see [12] and [19]. Also, Fošner and Fošner introduced the basic concepts of cubic Lie derivations and investigated the stability problem of cubic Lie derivations; see [6].

Rassias introduced the quartic functional equation in [13] which was the oldest quartic functional equation and investigated the stability problems of the following functional equation:

(1.1)
$$f(x+2y) + f(x-2y) + 6f(x) = 4f(x+y) + 4f(x-y) + 24f(y)$$
.

Chung and Sahoo [4] obtained the general solution of (1.1) by using the properties of a certain mapping of the form A(x, x, x, x), where the function $A : \mathbb{R}^4 \to \mathbb{R}$ is symmetric and additive in each variable.

In this paper, we will consider the following functional equation which is generalized and different from the equation (1.1):

(1.2)
$$f(ax+y) - f(x-ay) + \frac{1}{2}a(a^2+1)f(x-y) + (a^4-1)f(y)$$
$$= \frac{1}{2}a(a^2+1)f(x+y) + (a^4-1)f(x)$$

for all $x, y \in X$ and an integer $a(a \neq 0, \pm 1)$. We will show that the equation (1.2) is a general solution of quartic functional equation and introduced a quartic Lie *-derivation. Finally, we will prove the Hyers-Ulam stability problem of the quartic Lie *-derivations by using directed and fixed point methods.

2. A general solution of a quartic functional equation

Let X and Y be real vector spaces. In this section we will obtain the result that the functional equation (1.2) is a general solution of a quartic functional equation by using 4-additive symmetric mapping. Before we proceed, we will introduce some basic concepts concerning 4-additive symmetric mappings. A mapping $A_4 : X^4 \to Y$ is called 4-additive if it is additive in each variable. A mapping A_4 is said to

be symmetric if $A_4(x_1, x_2, x_3, x_4) = A_4(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)})$ for every permutation $\{\sigma(1), \sigma(2), \sigma(3), \sigma(4)\}$ of $\{1, 2, 3, 4\}$. If $A_4(x_1, x_2, x_3, x_4)$ is a 4-additive symmetric mapping, then $A^4(x)$ will denote the diagonal $A_4(x, x, x, x, x)$ and $A^4(qx) = q^4 A^4(x)$ for all $x \in X$ and all $q \in \mathbb{Q}$. A mapping $A^4(x)$ is called a monomial function of degree 4 (assuming $A^4 \not\equiv$ 0). On taking $x_1 = x_2 = \cdots = x_s = x$ and $x_{s+1} = x_{s+2} = \cdots = x_4 = y$ in $A_4(x_1, x_2, x_3, x_4)$, it is denoted by $A^{s,4-s}(x, y)$. We note that the generalized concepts of *n*-additive symmetric mappings are found in [16] and [18].

THEOREM 2.1. Let $A^4(x)$ be the diagonal of the 4-additive symmetric mapping $A_4 : X^4 \to Y$. A mapping $f : X \to Y$ is a solution of the functional equation (1.2) if and only if f is of the form $f(x) = A^4(x)$ for all $x \in X$.

Proof. Assume that f satisfies the functional equation (1.2). We will show that $f(x) = A^4(x)$ for all $x \in X$. On letting y = 0 in the equation (1.2), we have

(2.1)
$$f(ax) = a^4 f(x) - (a^4 - 1)f(0)$$

for all $x \in X$ and an integer number $a \neq 0, \pm 1$. Also, we have

$$f(y) - f(-ay) + \frac{1}{2}a(a^2 + 1)f(-y) + (a^4 - 1)f(y)$$

= $\frac{1}{2}a(a^2 + 1)f(y) + (a^4 - 1)f(0)$

by letting x = 0 in the equation (1.2). Replacing y by x in the previous equation, we get

$$f(x) - f(-ax) + \frac{1}{2}a(a^2 + 1)f(-x) + (a^4 - 1)f(x)$$

= $\frac{1}{2}a(a^2 + 1)f(x) + (a^4 - 1)f(0)$

for all $x \in X$ and $a \neq 0, \pm 1$. Hence the equation (2.1) implies that f is an odd mapping. On taking x = y in the equation (1.2) and using the equation (2.1), we have

$$(a+1)^4 f(x) - [(a+1)^4 - 1]f(0) - (a-1)^4 f(x) + [(a-1)^4 - 1]f(0) + \frac{1}{2}a(a^2+1)f(0) = 8a(a^2+1)f(x) - \frac{15}{2}a(a^2+1)f(0)$$

for all $x \in X$ and an integer $a (a \neq 0, \pm 1)$. Then we have $a(a^2-1)f(0) = 0$ for an integer $a (a \neq 0, \pm 1)$. This means that f(0) = 0. Also, the equation (2.1) implies that

$$(2.2) f(ax) = a^4 f(x)$$

for all $x \in X$. We can rewrite the functional equation (1.2) in the following form

$$\begin{aligned} f(x) &- \frac{1}{a^4 - 1} f(ax + y) + \frac{1}{a^4 - 1} f(x - ay) - \frac{a}{2(a^2 - 1)} f(x - y) \\ &+ \frac{a}{2(a^2 - 1)} f(x + y) - f(y) = 0 \,, \end{aligned}$$

for all $x, y \in X$ and an integer $a (a \neq 0, \pm 1)$. By Theorems 3.5 and 3.6 in [18], f is a generalized polynomial function of degree at most 4, that is, f is of the form

(2.3)
$$f(x) = A^4(x) + A^3(x) + A^2(x) + A^1(x) + A^0(x)$$

for all $x \in X$, where $A^0(x) = A^0$ is an arbitrary element of Y and $A^i(x)$ is the diagonal *i*-additive symmetric mapping $A_i : X^i \to Y$ (i = 1, 2, 3, 4). Since f(0) = 0 and f(-x) = f(x) for all $x \in X$, $A^0(x) = A^0 = 0$ and $A^1(x) = A^3(x) = 0$. Hence we have

$$f(x) = A^4(x) + A^2(x)$$

for all $x \in X$. The equation (2.3) and $A^n(qx) = q^n A^n(x)$ for all $x \in X$ and all $q \in \mathbb{Q}$ imply that $a^2(a^2-1)A^2(x) = 0$ for an integer $a \ (a \neq 0, \pm 1)$. Hence $A^2(x) = 0$, that is, $f(x) = A^4(x)$ for all $x \in X$, as desired.

Conversely, suppose $f(x) = A^4(x)$ for all $x \in X$, where $A^4(x)$ is a diagonal 4-additive symmetric mapping $A_4 : X^4 \to Y$. Note that

$$\begin{aligned} &A^4(qx + py) \\ &= q^4 A^4(x) + 4q^3 p A^{3,1}(x,y) + 6q^2 p^2 A^{2,2}(x,y) + 4q p^3 A^{1,3}(x,y) + p^4 A^4(y) \\ &r^s A^{s,t}(x,y) = A^{s,t}(rx,y) \,, \quad r^t A^{s,t}(x,y) = A^{s,t}(x,ry) \end{aligned}$$

where $1 \leq s, t \leq 3$ and $p, q, r \in \mathbb{Q}$. Thus f satisfies the equation (1.2).

For this reason, we call the mapping f a generalized quartic mapping if f satisfies the equation (1.2).

3. Quartic Lie *-Derivations

In this section, we will investigate the Hyers-Ulam stability of the quartic Lie *-derivation by using directed method and a fixed point method. Let A be a complex normed *-algebra and M be a Banach A-bimodule. For convenience, we will use $|| \cdot ||$ as norms on a normed algebra A and a normed A-bimodule M.

A mapping $f: A \to M$ is called a quartic homogeneous mapping if $f(\mu a) = \mu^4 f(a)$, for all $a \in A$ and $\mu \in \mathbb{C}$. A quartic homogeneous mapping $f: A \to M$ is called a *quartic derivation* if

$$f(xy) = f(x)y^4 + x^4f(y)$$

for all $x, y \in A$. A quartic homogeneous mapping f is called a *quartic* Lie derivation if

$$f([x, y]) = [f(x), y^4] + [x^4, f(y)]$$

for all $x, y \in A$, where [x, y] = xy - yx. A quartic Lie derivation f is called a quartic Lie *-derivation if f satisfies $f(x^*) = f(x)^*$ for all $x \in A$.

EXAMPLE 3.1. Let $A = \mathbb{C}$ be a complex number field with the map $z \mapsto z^* = \bar{z}$ (where \bar{z} is the complex conjugate of z). Suppose that $f: A \to A$ by $f(x) = x^4$ for all $x \in A$. Then f is quartic and

$$f([x, y]) = [f(x), y^4] + [x^4, f(y)] = 0$$

for all $x, y \in A$. Also,

$$f(x^*) = f(\bar{x}) = \bar{x}^4 = \overline{f(x)} = f(x)^*$$

for all $x \in A$. Hence we know that f is a quartic Lie *-derivation, as desired.

For this entire section,

$$\mathbb{T}^1 = \left\{ \mu \in \mathbb{C} \mid |\mu| = 1 \right\}.$$

For the given mapping $f: A \to M$, we consider

(3.1)
$$\Delta_{\mu}f(a,b) := f(m\mu a + \mu b) - f(\mu a - m\mu b) + \frac{1}{2}\mu^{4}m(m^{2} + 1)f(a - b) + \mu^{4}(m^{4} - 1)f(b) - \frac{1}{2}\mu^{4}m(m^{2} + 1)f(a + b) - \mu^{4}(m^{4} - 1)f(a), \Delta f(a,b) := f([a, b]) - [f(a), b^{4}] - [a^{4}, f(b)] for all a, b \in A, \mu \in \mathbb{C} and m \in \mathbb{Z}, (m \neq 0, \pm 1)$$

for all $a, b \in A, \mu \in \mathbb{C}$ and $m \in \mathbb{Z} (m \neq 0, \pm 1)$.

THEOREM 3.2. Let n_0 be a positive integer. Suppose that there is a mapping $f : A \to M$ with f(0) = 0 and there exists a function $\phi : A^5 \to [0, \infty)$ such that

(3.2)
$$\widetilde{\phi}(a, b, x, y, z) := \sum_{j=0}^{\infty} \frac{1}{|m|^{4j}} \phi(m^j a, m^j b, m^j x, m^j y, m^j z) < \infty$$

(3.3)
$$||\Delta_{\mu}f(a,b)|| \le \phi(a,b,0,0,0)$$

(3.4)
$$||\Delta f(x,y) + f(z^*) - f(z)^*|| \le \phi(0,0,x,y,z)$$

for all $\mu \in \mathbb{T}^1_{\frac{1}{n_0}} = \{e^{i\theta} \mid 0 \leq \theta \leq \frac{2\pi}{n_0}\}$ and all $a, b, x, y, z \in A$. For each fixed $a \in A$, if the mapping $r \mapsto f(ra)$ from \mathbb{R} to M is continuous then there exists a unique quartic Lie *-derivation $L : A \to M$ such that

(3.5)
$$||f(a) - L(a)|| \le \frac{1}{|m|^4} \widetilde{\phi}(a, 0, 0, 0, 0),$$

for all $a \in A$.

Proof. On letting b = 0 and $\mu = 1$ in the inequality (3.3), we have

(3.6)
$$||f(a) - \frac{1}{m^4}f(ma)|| \le \frac{1}{|m|^4}\phi(a, 0, 0, 0, 0)$$

for all $a \in A$. By using the induction steps with (3.6), we have the following inequality

$$(3.7) \qquad ||\frac{1}{m^{4t}}f(m^t a) - \frac{1}{m^{4k}}f(m^k a)|| \le \frac{1}{|m|^4} \sum_{j=k}^{t-1} \frac{\phi(m^j a, 0, 0, 0, 0)}{|m|^{4j}}$$

for $t > k \ge 0$ and $a \in A$. Both (3.2) and (3.7) imply that $\{\frac{1}{m^{4n}}f(m^na)\}_{n=0}^{\infty}$ is a Cauchy sequence. By the completeness of M, we know that the sequence is convergent. Hence we can define a mapping $L : A \to M$ as

(3.8)
$$L(a) = \lim_{n \to \infty} \frac{1}{m^{4n}} f(m^n a)$$

for $a \in A$. On taking t = n and k = 0 in the inequality (3.7), we get

(3.9)
$$||\frac{1}{m^{4n}}f(m^n a) - f(a)|| \le \frac{1}{|m|^4} \sum_{j=0}^{n-1} \frac{\phi(m^j a, 0, 0, 0, 0)}{|m|^{4j}}$$

for n > 0 and $a \in A$. On taking $n \to \infty$ in the inequality (3.9), the inequality (3.2) implies that the inequality (3.5) holds.

Quartic Lie *-Derivations

We know that

(3.10)
$$||\Delta_{\mu}L(a,b)|| = \lim_{n \to \infty} \frac{1}{|m|^{4n}} ||\Delta_{\mu}f(m^{n}a,m^{n}b)||$$
$$\leq \lim_{n \to \infty} \frac{\phi(m^{n}a,m^{n}b,0,0,0)}{|m|^{4n}} = 0,$$

for all $a, b \in A$ and $\mu \in \mathbb{T}^{1}_{\frac{1}{n_{0}}}$. On taking $\mu = 1$ in the inequality (3.10), we may conclude that the mapping L is a quartic mapping. Also, the inequality (3.10) implies that $\Delta_{\mu}L(a, 0) = 0$. Then we have

$$L(\mu a) = \mu^4 L(a)$$

for all
$$a \in A$$
 and $\mu \in \mathbb{T}_{\frac{1}{n_0}}^1$. Let $\nu \in \mathbb{T}^1$. Then we may let $\nu = e^{i\theta}$, where $0 \le \theta \le 2\pi$, and let $\nu_1 = \nu^{\frac{1}{n_0}} = e^{\frac{i\theta}{n_0}}$. Then $\nu_1 \in \mathbb{T}_{\frac{1}{n_0}}^1$. Hence we have $L(\nu a) = L(\nu_1^{n_0}a) = \nu_1^{4n_0}L(a) = \nu^4 L(a)$

for all $\nu \in \mathbb{T}^1$ and $a \in A$. Suppose that ρ is any continuous linear functional on A and a is a fixed element in A. Then we may define a function $g : \mathbb{R} \to \mathbb{R}$ by

$$g(r) = \rho(L(ra))$$

for all $r \in \mathbb{R}$. It is not hard to check that the mapping g is quartic. For all $k \in \mathbb{N}$ and $r \in \mathbb{R}$, we may let

$$g_k(r) = \rho\left(\frac{f(m^k r a)}{m^{4k}}\right)$$

We note that g is measurable because g is the pointwise limit of the sequence of measurable functions g_k . In addition, the measurable quartic function g is continuous (see [5]) and we have

$$g(r) = r^4 g(1)$$

for all $r \in \mathbb{R}$. Thus

$$\rho(L(ra)) = g(r) = r^4 g(1) = r^4 \rho(L(a)) = \rho(r^4 L(a))$$

for all $r \in \mathbb{R}$. Since ρ was an arbitrary continuous linear functional on A,

$$L(ra) = r^4 L(a)$$

for all $r \in \mathbb{R}$. Let $\omega \in \mathbb{C} (\omega \neq 0)$. Then $\frac{\omega}{|\omega|} \in \mathbb{T}^1$. Hence

$$L(\omega a) = L\left(\frac{\omega}{|\omega|}|\omega|a\right) = \left(\frac{\omega}{|\omega|}\right)^4 L(|\omega|a) = \left(\frac{\omega}{|\omega|}\right)^4 |\omega|^4 L(a) = \omega^4 L(a)$$

for all $a \in A$. Since a was an arbitrary element in A, we may conclude that L is quartic homogeneous.

Next, replacing x by $m^k x$ and y by $m^k y$ and z = 0 in the inequality (3.4), we have

$$\begin{aligned} ||\Delta L(x,y)|| &= \lim_{n \to \infty} ||\frac{\Delta f(m^n x, m^n y)}{m^{4n}}|| \\ &\leq \lim_{n \to \infty} \frac{1}{|m|^{4n}} \phi(0, 0, m^n x, m^n y, 0) = 0 \end{aligned}$$

for all $x, y \in A$. Then we get $\Delta L(x, y) = 0$ for all $x, y \in A$. This means that L is a quartic Lie derivation. On letting x = y = 0 and $z = m^k z$ in the inequality (3.4), we have

(3.11)
$$\left| \left| \frac{f(m^n z^*)}{m^{4n}} - \frac{f(m^n z)^*}{m^{4n}} \right| \right| \le \frac{\phi(0, 0, 0, 0, m^n z)}{|m|^{4n}}$$

for all $z \in A$. As $n \to \infty$ in the inequality (3.11), we have

$$L(z^*) = L(z)^*$$

for all $z \in A$. This means that L is a quartic Lie *-derivation. Now, we will show that the quartic Lie *-derivation is unique. Hence we assume $L': A \to A$ is another quartic *-derivation satisfying the inequality (3.5). Then

$$\begin{split} ||L(a) - L'(a)|| &= \frac{1}{|m|^{4n}} ||L(m^n a) - L'(m^n a)|| \\ &\leq \frac{1}{|m|^{4n}} \Big(||L(m^n a) - f(m^n a)|| + ||f(m^n a) - L'(m^n a)|| \Big) \\ &\leq \frac{1}{|m|^{4n+1}} \sum_{j=0}^{\infty} \frac{1}{|m|^{4j}} \phi(m^{j+n} a, 0, 0, 0, 0) \\ &= \frac{1}{|m|^4} \sum_{j=n}^{\infty} \frac{1}{|m|^{4j}} \phi(m^j a, 0, 0, 0, 0) \,, \end{split}$$

which tends to zero as $k \to \infty$, for all $a \in A$. Thus L(a) = L'(a) for all $a \in A$. Hence the uniqueness of L was proved, as claimed.

COROLLARY 3.3. Let θ , r be positive real number with r < 4. Suppose that $f: A \to M$ is an even mapping with f(0) = 0 such that

$$\begin{aligned} ||\Delta_{\mu}f(a,b)|| &\leq \theta(||a||^{r} + ||b||^{r}) \\ ||\Delta f(x,y) + f(z^{*}) - f(z)^{*}|| &\leq \theta(||x||^{r} + ||y||^{r} + ||z||^{r}) \end{aligned}$$

for all $\mu\in\mathbb{T}^1_{\frac{1}{n_0}}$ and $a,b,x,y,z\in A\,.$ Then there exists a unique quartic Lie *-derivation $L: A \to M$ satisfying

$$||f(a) - L(a)|| \le \frac{\theta ||a||^r}{(|m|^4 - |m|^r)}$$

for all $a \in A$.

Proof. On taking $\phi(a, b, x, y, z) = \theta(||a||^r + ||b||^r + ||x||^r + ||y||^r + ||z||^r)$ in Theorem 3.2 for all $a, b, x, y, z \in A$, we have the desired results.

In the following corollaries, we will investigate the hyperstability for the quartic Lie *-derivations.

COROLLARY 3.4. Let r be positive real number with r < 4. Suppose that $f: A \to M$ is an even mapping with f(0) = 0 such that

$$||\Delta_{\mu}f(a,b)|| \le ||a||^{r}||b||^{r}$$
$$|\Delta f(x,y) + f(z^{*}) - f(z)^{*}|| \le ||x||^{r}||y||^{r}||z||^{r}$$

for all $\mu \in \mathbb{T}^1_{\frac{1}{n_0}}$ and $a, b, x, y, z \in A$. Then f is a quartic Lie *-derivation on A.

Proof. If we take $\phi(a, b, x, y, z) = (||a||^r + ||x||^r)(||b||^r + ||y||^r||z||^r)$ in Theorem 3.2 for all $a, b, x, y, z \in A$, then we have $\phi(a, 0, 0, 0, 0) = 0$. Hence (3.5) implies that f is a quartic Lie *-derivation on A.

COROLLARY 3.5. Let r be positive real number with r < 4. Suppose that $f: A \to M$ is an even mapping with f(0) = 0 such that

$$||\Delta_{\mu}f(a,b)|| \le ||a||^{r}||b||^{r}$$

$$\Delta f(x,y) + f(z^{*}) - f(z)^{*}|| \le ||x||^{r}(||y||^{r} + ||z||)$$

$$\begin{split} ||\Delta f(x,y)+f(z^*)-f(z)^*|| &\leq ||x||^r(||y||^r+||z||^r) \\ \text{for all } \mu \in \mathbb{T}^1_{\frac{1}{n_0}} \text{ and } a,b,x,y,z \in A \text{ . Then } f \text{ is a quartic Lie *-derivation} \\ \text{or } A \end{split}$$
on A.

Proof. Assume that $\phi(a, b, x, y, z) = (||a||^r + ||x||^r)(||b||^r + ||y||^r + ||z||^r)$ in Theorem 3.2 for all $a, b, x, y, z \in A$. Then $\phi(a, 0, 0, 0, 0) = 0$. Hence the inequality (3.5) implies that f is a quartic Lie *-derivation on A. \Box

The following statements are relative to the alternative of fixed point; see [11] and [15]. By using this method, we will prove the Hyers-Ulam stability.

THEOREM 3.6 (The alternative of fixed point [11], [15]). Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping $T: \Omega \to \Omega$ with Lipschitz constant l. Then for each given $x \in \Omega$, either

$$d(T^n x, T^{n+1} x) = \infty \text{ for all } n \ge 0,$$

or there exists a natural number n_0 such that

- 1. $d(T^n x, T^{n+1} x) < \infty$ for all $n \ge n_0$;
- 2. The sequence $(T^n x)$ is convergent to a fixed point y^* of T;
- 3. y^* is the unique fixed point of T in the set

$$\triangle = \{ y \in \Omega | d(T^{n_0}x, y) < \infty \};$$

4. $d(y, y^*) \le \frac{1}{1-l} d(y, Ty)$ for all $y \in \triangle$.

.

THEOREM 3.7. Let n_0 be a positive integer. Suppose that $f: A \to M$ is a continuous even mapping with f(0) = 0. Assume that $\phi : A^5 \to A^5$ $[0,\infty)$ is a continuous mapping such that

(3.12)
$$||\Delta_{\mu}f(a,b)|| \le \phi(a,b,0,0,0)$$

(3.13)
$$||\Delta f(x,y) + f(z^*) - f(z)^*|| \le \phi(0,0,x,y,z)$$

for all $\mu \in \mathbb{T}^1_{\frac{1}{2}}$ and $a, b, x, y, z \in A$. If there is a constant $l \in (0, 1)$ such that

(3.14)
$$\phi(ma, mb, mx, my, mz) \le |m|^4 l \phi(a, b, x, y, z)$$

then there exists a quartic Lie *-derivation $L: A \to M$ such that

(3.15)
$$||f(a) - L(a)|| \le \frac{1}{|m|^4(1-l)}\phi(a, 0, 0, 0, 0)$$

for all $a, b, x, y, z \in A$.

Proof. We will consider the following set

$$\Omega = \{ g \, | \, g : A \to A \,, g(0) = 0 \} \,.$$

Then there is the generalized metric on Ω ,

 $d(g, h) = \inf \{ \lambda \in (0, \infty) \mid \| g(a) - h(a) \| \le \lambda \phi(a, 0, 0, 0, 0), \text{ for all } a \in A \}.$ It is not hard to prove that (Ω, d) is a complete space. A function $T: \Omega \to \Omega$ is defined by

(3.16)
$$T(g)(a) = \frac{1}{m^4}g(ma)$$

for all $a \in A$. We know that there is an arbitrary constant with $d(g, h) \leq \lambda$, for all $g, h \in \Omega$, where $\lambda \in (0, \infty)$. Then

(3.17)
$$||g(a) - h(a)|| \le \lambda \phi(a, 0, 0, 0, 0)$$

for all $a \in A$. On taking a = ma in the inequality (3.17) and using the inequality (3.14) and the equation (3.16), we get

$$||T(g)(a) - T(h)(a)|| = \frac{1}{|m|^4} ||g(ma) - h(ma)||$$

$$\leq \frac{1}{|m|^4} \lambda \phi(ma, 0, 0, 0, 0) \leq c l \phi(a, 0, 0, 0, 0).$$

This implies that

$$d(Tg, Th) \leq \lambda l$$
.

Hence we have that

$$d(Tg, Th) \le l \, d(g, h) \,,$$

for all $g, h \in \Omega$. This means that T is a strictly self-mapping of Ω with the Lipschitz constant l. On taking $\mu = 1, b = 0$ in the inequality (3.12), we have

$$||\frac{1}{m^4}f(ma) - f(a)|| \le \frac{1}{|m|^4}\phi(a, 0, 0, 0, 0)$$

for all $a \in A$. This means that

$$d(Tf, f) \le \frac{1}{|m|^4}.$$

Now, We will apply to Theorem of the alternative of fixed point. Since $\lim_{n\to\infty} d(T^n f, L) = 0$, we know that there exists a fixed point L of T in Ω such that

(3.18)
$$L(a) = \lim_{n \to \infty} \frac{f(m^n a)}{m^{4n}},$$

for all $a \in A$. Hence

$$d(f,L) \le \frac{1}{1-l}d(Tf,f) \le \frac{1}{|m|^4}\frac{1}{1-l}$$

Hence we may conclude that the inequality (3.15) holds. Since $l \in (0, 1)$, the inequality (3.14) implies that

(3.19)
$$\lim_{n \to \infty} \frac{\phi(m^n a, m^n b, m^n x, m^n y, m^n z)}{|m|^{4n}} = 0.$$

Dongseung Kang and Heejeong Koh

Replacing a by $m^n a$ and b by $m^n b$ in the inequality (3.12), we get

$$\frac{1}{|m|^{4n}} ||\Delta_{\mu} f(m^n a, m^n b)|| \le \frac{\phi(m^n a, m^n b, 0, 0, 0)}{|m|^{4n}} \,.$$

On taking the limit as $k \to \infty$, we get $\Delta_{\mu} f(a, b) = 0$ and all $\mu \in \mathbb{T}^{1}_{\underline{1}}$. The remains of this proof are analogous to the proof in Theorem 3.2. \Box^{n_0}

COROLLARY 3.8. Let θ , r be real numbers with 0 < r < 4. Suppose that $f: A \to M$ is a mapping with f(0) = 0 such that

$$||\Delta_{\mu}f(a,b)|| \le \theta(||a||^r + ||b||^r)$$

$$||\Delta f(x,y) + f(z^*) - f(z)^*|| \le \theta(||x||^r + ||y||^r + ||z||^r)$$

 $\|\Delta f(x,y) + f(z) - f(z)\| \le \theta(\|x\| + \|y\| + \|z\|)$ for all $\mu \in \mathbb{T}^1_{\frac{1}{n_0}}$ and $a, b, x, y, z \in A$. Then there exists a unique quartic Lie *-derivation $L : A \to M$ satisfying

$$||f(a) - L(a)|| \le \frac{\theta ||a||^r}{|m|^4(1-l)}$$

for all $a \in A$.

Proof. The proof follows from Theorem 3.7 by taking $\phi(a, b, x, y, z) =$ $\theta(||a||^r + ||b||^r + ||x||^r + ||y||^r + ||z||^r)$ for all $a, b, x, y, z \in A$. \square

Next, we will prove the hyperstability for the quartic Lie *-derivations.

COROLLARY 3.9. Let r be a real number with 0 < r < 4. Suppose that $f: A \to M$ is an even mapping with f(0) = 0 such that

$$||\Delta_{\mu}f(a,b)|| \le ||a||^{r}||b||^{r}$$
$$|\Delta f(x,y) + f(z^{*}) - f(z)^{*}|| \le ||x||^{r}||y||^{r}||z||^{r}$$

for all $\mu \in \mathbb{T}^1_{\frac{1}{n_0}}$ and $a, b, x, y, z \in A$. Then f is a quartic Lie *-derivation on A.

Proof. If $\phi(a, b, x, y, z) = (||a||^r + ||x||^r)(||b||^r + ||y||^r||z||^r)$ in Theorem 3.7, then we get $\phi(a, 0, 0, 0, 0) = 0$. Thus we may conclude that f is a quartic Lie *-derivation on A because of the inequality (3.15).

COROLLARY 3.10. Let r be a real number with 0 < r < 4. Suppose that $f: A \to M$ is an even mapping with f(0) = 0 such that

$$||\Delta_{\mu}f(a,b)|| \le ||a||^{r}||b||^{r}$$
$$||\Delta f(x,y) + f(z^{*}) - f(z)^{*}|| \le ||x||^{r}(||y||^{r} + ||z||^{r})$$

for all $\mu \in \mathbb{T}^1_{\frac{1}{n_0}}$ and $a, b, x, y, z \in A$. Then f is a quartic Lie *-derivation on A.

Proof. On letting $\phi(a, b, x, y, z) = (||a||^r + ||x||^r)(||b||^r + ||y||^r + ||z||^r)$ in Theorem 3.7, we get $\phi(a, 0, 0, 0, 0) = 0$. Thus f is a quartic Lie *derivation because of the inequality (3.15).

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
- [2] N. Brillouët-Belluot, J. Brzdęk and K. Ciepliński, Fixed point theory and the Ulam stability, Abstract and Applied Analysis 2014, Article ID 829419, 16 pages (2014).
- [3] J. Brzdęk, L. Cădariu and K. Ciepliński, On some recent developments in Ulam's type stability, Abstract and Applied Analysis 2012, Article ID 716936, 41 pages (2012).
- [4] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bulletin of the Korean Mathematical Society, 40 no.4 (2003), 565–576.
- [5] St. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.
- [6] A. Fošner and M. Fošner, Approximate cubic Lie derivations, Abstract and Applied Analysis 2013, Article ID 425784, 5 pages (2013).
- [7] D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [8] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, USA, 1998.
- [9] S. Jang and C. Park, Approximate *-derivations and approximate quadratic *derivations on C*-algebra, J. Inequal. Appl. 2011, Articla ID 55 (2011).
- [10] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, USA, 2011.
- [11] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126, 74 (1968), 305–309.
- [12] C. Park and A. Bodaghi, On the stability of *-derivations on Banach *-algebras, Adv. Diff. Equat. 2012 2012:138 (2012).
- [13] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III, 34 no. 2 (1999)243–252.
- [14] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
- [15] I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).

Dongseung Kang and Heejeong Koh

- [16] P.K. Sahoo, A generalized cubic functional equation, Acta Math. Sinica 21 no. 5 (2005), 1159–1166.
- [17] S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, USA, 1960.
- [18] T.Z. Xu, J.M. Rassias and W.X. Xu, A generalized mixed quadratic-quartic functional equation, Bull. Malaysian Math. Scien. Soc. 35 no. 3 (2012), 633– 649.
- [19] S.Y. Yang, A. Bodaghi, K.A.M. Atan, Approximate cubic *-derivations on Banach *-algebra, Abstract and Applied Analysis, 2012, Article ID 684179, 12 pages (2012).

Dongseung Kang Mathematics Education Dankook University Yongin 16890, Korea *E-mail*: dskang@dankook.ac.kr

Heejeong Koh Mathematics Education Dankook University Yongin 16890, Korea *E-mail*: khjmath@dankook.ac.kr