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A FIXED POINT APPROACH TO THE STABILITY OF

QUARTIC LIE ∗-DERIVATIONS

Dongseung Kang and Heejeong Koh∗

Abstract. We obtain the general solution of the functional equa-
tion f(ax + y) − f(x − ay) + 1

2a(a2 + 1)f(x − y) + (a4 − 1)f(y) =
1
2a(a2 + 1)f(x + y) + (a4 − 1)f(x) and prove the stability problem
of the quartic Lie ∗-derivation by using a directed method and an
alternative fixed point method.

1. Introduction

A mapping is said to be stable if a mapping is an almost-homomorphism,
there exists a true homomorphism near the almost-homomorphism. Ulam
introduced the stability problem for functional equations which con-
cerned the stability of group homomorphisms, thai is, given two groupsG
and H , is every almost-homomorphism G→ H close to a true homomor-
phism G → H ?; see [17]. Hyers [7] investigated stability problems re-
lated to the question of Ulam on Banach spaces. Subsequently, the result
of Hyers was generalized by a number of authors. In particular, Aoki [1]
studied the stability problem for additive mapping and Rassias [14]
proved the problem for linear mappings by considering a unbounded
Cauchy difference operator. Afterwards, the result of Rassias has pro-
vided a lot of influence in the development of what we call Hyers-Ulam
stability or Hyers-Ulam-Rassias stability. The stability problems of this
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topic have been investigated by a number of authors; see [10], [8], [2]
and [3]. In fact, the stability problems have been extensively investi-
gated to the various points of views such as various functional equations,
various spaces and so on. Especially, Jang and Park [9] introduced the
concepts of ∗-derivations and investigated the stability problems of qua-
dratic ∗-derivations on Banach C∗-algebra. Also, Park and Bodaghi and
Yang et al. studied the stability properties of ∗-derivations by using an
alternative fixed point method; see [12] and [19]. Also, Fošner and Fošner
introduced the basic concepts of cubic Lie derivations and investigated
the stability problem of cubic Lie derivations; see [6].

Rassias introduced the quartic functional equation in [13] which was
the oldest quartic functional equation and investigated the stability
problems of the following functional equation:

(1.1) f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y) + 24f(y) .

Chung and Sahoo [4] obtained the general solution of (1.1) by using
the properties of a certain mapping of the form A(x, x, x, x) , where the
function A : R4 → R is symmetric and additive in each variable.

In this paper, we will consider the following functional equation which
is generalized and different from the equation (1.1):

(1.2) f(ax+ y)− f(x− ay) +
1

2
a(a2 + 1)f(x− y) + (a4 − 1)f(y)

=
1

2
a(a2 + 1)f(x+ y) + (a4 − 1)f(x)

for all x , y ∈ X and an integer a(a 6= 0 ,±1) . We will show that the
equation (1.2) is a general solution of quartic functional equation and
introduced a quartic Lie ∗-derivation. Finally, we will prove the Hyers-
Ulam stability problem of the quartic Lie ∗-derivations by using directed
and fixed point methods.

2. A general solution of a quartic functional equation

Let X and Y be real vector spaces. In this section we will obtain
the result that the functional equation (1.2) is a general solution of
a quartic functional equation by using 4-additive symmetric mapping.
Before we proceed, we will introduce some basic concepts concerning
4-additive symmetric mappings. A mapping A4 : X4 → Y is called
4-additive if it is additive in each variable. A mapping A4 is said to
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be symmetric if A4(x1, x2, x3, x4) = A4(xσ(1), xσ(2), xσ(3), xσ(4)) for every
permutation {σ(1), σ(2), σ(3), σ(4)} of {1, 2, 3, 4} . If A4(x1 , x2 , x3 , x4)
is a 4-additive symmetric mapping, then A4(x) will denote the diagonal
A4(x , x , x , x) and A4(qx) = q4A4(x) for all x ∈ X and all q ∈ Q . A
mapping A4(x) is called a monomial function of degree 4 (assuming A4 6≡
0). On taking x1 = x2 = · · · = xs = x and xs+1 = xs+2 = · · · = x4 = y
in A4(x1 , x2 , x3 , x4) , it is denoted by As,4−s(x , y) . We note that the
generalized concepts of n-additive symmetric mappings are found in [16]
and [18].

Theorem 2.1. Let A4(x) be the diagonal of the 4-additive symmetric
mapping A4 : X4 → Y . A mapping f : X → Y is a solution of the
functional equation (1.2) if and only if f is of the form f(x) = A4(x) for
all x ∈ X .

Proof. Assume that f satisfies the functional equation (1.2) . We will
show that f(x) = A4(x) for all x ∈ X . On letting y = 0 in the equation
(1.2), we have

(2.1) f(ax) = a4f(x)− (a4 − 1)f(0)

for all x ∈ X and an integer number a 6= 0 ,±1 . Also, we have

f(y)− f(−ay) +
1

2
a(a2 + 1)f(−y) + (a4 − 1)f(y)

=
1

2
a(a2 + 1)f(y) + (a4 − 1)f(0)

by letting x = 0 in the equation (1.2). Replacing y by x in the previous
equation, we get

f(x)− f(−ax) +
1

2
a(a2 + 1)f(−x) + (a4 − 1)f(x)

=
1

2
a(a2 + 1)f(x) + (a4 − 1)f(0)

for all x ∈ X and a 6= 0 ,±1 . Hence the equation (2.1) implies that f is
an odd mapping. On taking x = y in the equation (1.2) and using the
equation (2.1), we have

(a+ 1)4f(x)− [(a+ 1)4 − 1]f(0)− (a− 1)4f(x) + [(a− 1)4 − 1]f(0)

+
1

2
a(a2 + 1)f(0) = 8a(a2 + 1)f(x)− 15

2
a(a2 + 1)f(0)
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for all x ∈ X and an integer a (a 6= 0 ,±1) . Then we have a(a2−1)f(0) =
0 for an integer a (a 6= 0 ,±1) . This means that f(0) = 0 . Also, the
equation (2.1) implies that

(2.2) f(ax) = a4f(x)

for all x ∈ X . We can rewrite the functional equation (1.2) in the fol-
lowing form

f(x)− 1

a4 − 1
f(ax+ y) +

1

a4 − 1
f(x− ay)− a

2(a2 − 1)
f(x− y)

+
a

2(a2 − 1)
f(x+ y)− f(y) = 0 ,

for all x , y ∈ X and an integer a (a 6= 0 ,±1) . By Theorems 3.5 and 3.6
in [18], f is a generalized polynomial function of degree at most 4, that
is, f is of the form

(2.3) f(x) = A4(x) + A3(x) + A2(x) + A1(x) + A0(x)

for all x ∈ X , where A0(x) = A0 is an arbitrary element of Y and
Ai(x) is the diagonal i-additive symmetric mapping Ai : X i → Y (i =
1, 2, 3, 4) . Since f(0) = 0 and f(−x) = f(x) for all x ∈ X , A0(x) =
A0 = 0 and A1(x) = A3(x) = 0 . Hence we have

f(x) = A4(x) + A2(x) ,

for all x ∈ X . The equation (2.3) and An(qx) = qnAn(x) for all x ∈ X
and all q ∈ Q imply that a2(a2−1)A2(x) = 0 for an integer a (a 6= 0 ,±1) .
Hence A2(x) = 0 , that is, f(x) = A4(x) for all x ∈ X , as desired.

Conversely, suppose f(x) = A4(x) for all x ∈ X , where A4(x) is a
diagonal 4-additive symmetric mapping A4 : X4 → Y . Note that

A4(qx+ py)

= q4A4(x) + 4q3pA3,1(x, y) + 6q2p2A2,2(x, y) + 4qp3A1,3(x, y) + p4A4(y)

rsAs,t(x, y) = As,t(rx, y) , rtAs,t(x, y) = As,t(x, ry)

where 1 ≤ s, t ≤ 3 and p, q, r ∈ Q . Thus f satisfies the equation (1.2).

For this reason, we call the mapping f a generalized quartic mapping
if f satisfies the equation (1.2).
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3. Quartic Lie ∗-Derivations

In this section, we will investigate the Hyers-Ulam stability of the
qyartic Lie ∗-derivation by using directed method and a fixed point
method. Let A be a complex normed ∗-algebra and M be a Banach
A-bimodule. For convenience, we will use || · || as norms on a normed
algebra A and a normed A-bimodule M .

A mapping f : A → M is called a quartic homogeneous mapping if
f(µa) = µ4f(a) , for all a ∈ A and µ ∈ C . A quartic homogeneous
mapping f : A→M is called a quartic derivation if

f(xy) = f(x)y4 + x4f(y)

for all x , y ∈ A . A quartic homogeneous mapping f is called a quartic
Lie derivation if

f([x, y]) = [f(x), y4] + [x4, f(y)]

for all x, y ∈ A , where [x, y] = xy − yx . A quartic Lie derivation f
is called a quartic Lie ∗-derivation if f satisfies f(x∗) = f(x)∗ for all
x ∈ A .

Example 3.1. Let A = C be a complex number field with the map
z 7→ z∗ = z̄ (where z̄ is the complex conjugate of z). Suppose that
f : A→ A by f(x) = x4 for all x ∈ A . Then f is quartic and

f([x, y]) = [f(x), y4] + [x4, f(y)] = 0

for all x , y ∈ A . Also,

f(x∗) = f(x̄) = x̄4 = f(x) = f(x)∗

for all x ∈ A . Hence we know that f is a quartic Lie ∗-derivation, as
desired.

For this entire section,

T1 = {µ ∈ C | |µ| = 1} .
For the given mapping f : A→M , we consider

(3.1) ∆µf(a, b) := f(mµa+µb)−f(µa−mµb)+
1

2
µ4m(m2 +1)f(a−b)

+µ4(m4 − 1)f(b)− 1

2
µ4m(m2 + 1)f(a+ b)− µ4(m4 − 1)f(a) ,

∆f(a, b) := f([a, b])− [f(a), b4]− [a4, f(b)]

for all a, b ∈ A , µ ∈ C and m ∈ Z (m 6= 0 ,±1) .
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Theorem 3.2. Let n0 be a positive integer. Suppose that there is
a mapping f : A → M with f(0) = 0 and there exists a function
φ : A5 → [0, ∞) such that

(3.2) φ̃(a, b, x, y, z) :=
∞∑
j=0

1

|m|4j
φ(mja,mjb,mjx,mjy,mjz) <∞

(3.3) ||∆µf(a, b)|| ≤ φ(a, b, 0, 0, 0)

(3.4) ||∆f(x, y) + f(z∗)− f(z)∗|| ≤ φ(0, 0, x, y, z)

for all µ ∈ T1
1
n0

= {eiθ | 0 ≤ θ ≤ 2π
n0
} and all a, b, x, y, z ∈ A . For each

fixed a ∈ A , if the mapping r 7→ f(ra) from R to M is continuous then
there exists a unique quartic Lie ∗-derivation L : A→M such that

(3.5) ||f(a)− L(a)|| ≤ 1

|m|4
φ̃(a, 0, 0, 0, 0) ,

for all a ∈ A .

Proof. On letting b = 0 and µ = 1 in the inequality (3.3), we have

(3.6) ||f(a)− 1

m4
f(ma)|| ≤ 1

|m|4
φ(a, 0, 0, 0, 0)

for all a ∈ A . By using the induction steps with (3.6), we have the
following inequality

(3.7) || 1

m4t
f(mta)− 1

m4k
f(mka)|| ≤ 1

|m|4
t−1∑
j=k

φ(mja, 0, 0, 0, 0)

|m|4j

for t > k ≥ 0 and a ∈ A . Both (3.2) and (3.7) imply that { 1
m4nf(mna)}∞n=0

is a Cauchy sequence. By the completeness of M , we know that the se-
quence is convergent. Hence we can define a mapping L : A → M
as

(3.8) L(a) = lim
n→∞

1

m4n
f(mna)

for a ∈ A . On taking t = n and k = 0 in the inequality (3.7), we get

(3.9) || 1

m4n
f(mna)− f(a)|| ≤ 1

|m|4
n−1∑
j=0

φ(mja, 0, 0, 0, 0)

|m|4j

for n > 0 and a ∈ A . On taking n → ∞ in the inequality (3.9), the
inequality (3.2) implies that the inequality (3.5) holds.
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We know that

(3.10) ||∆µL(a, b)|| = lim
n→∞

1

|m|4n
||∆µf(mna,mnb)||

≤ lim
n→∞

φ(mna,mnb, 0, 0, 0)

|m|4n
= 0 ,

for all a, b ∈ A and µ ∈ T1
1
n0

. On taking µ = 1 in the inequality (3.10),

we may conclude that the mapping L is a quartic mapping. Also, the
inequality (3.10) implies that ∆µL(a, 0) = 0 . Then we have

L(µa) = µ4L(a)

for all a ∈ A and µ ∈ T1
1
n0

. Let ν ∈ T1 . Then we may let ν = eiθ , where

0 ≤ θ ≤ 2π , and let ν1 = ν
1
n0 = e

iθ
n0 . Then ν1 ∈ T1

1
n0

. Hence we have

L(νa) = L(νn0
1 a) = ν4n0

1 L(a) = ν4L(a)

for all ν ∈ T1 and a ∈ A . Suppose that ρ is any continuous linear
functional on A and a is a fixed element in A . Then we may define a
function g : R→ R by

g(r) = ρ(L(ra))

for all r ∈ R . It is not hard to check that the mapping g is quartic. For
all k ∈ N and r ∈ R , we may let

gk(r) = ρ
(f(mkra)

m4k

)
.

We note that g is measurable because g is the pointwise limit of the
sequence of measurable functions gk . In addition, the measurable quartic
function g is continuous (see [5]) and we have

g(r) = r4g(1)

for all r ∈ R . Thus

ρ(L(ra)) = g(r) = r4g(1) = r4ρ(L(a)) = ρ(r4L(a))

for all r ∈ R . Since ρ was an arbitrary continuous linear functional on
A ,

L(ra) = r4L(a)

for all r ∈ R . Let ω ∈ C (ω 6= 0) . Then ω
|ω| ∈ T1 . Hence

L(ωa) = L
( ω
|ω|
|ω|a

)
=
( ω
|ω|

)4
L(|ω|a) =

( ω
|ω|

)4
|ω|4L(a) = ω4L(a)
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for all a ∈ A . Since a was an arbitrary element in A , we may conclude
that L is quartic homogeneous.

Next, replacing x by mkx and y by mky and z = 0 in the inequality
(3.4), we have

||∆L(x, y)|| = lim
n→∞

||∆f(mnx,mny)

m4n
||

≤ lim
n→∞

1

|m|4n
φ(0, 0,mnx,mny, 0) = 0

for all x, y ∈ A . Then we get ∆L(x, y) = 0 for all x, y ∈ A . This means
that L is a quartic Lie derivation. On letting x = y = 0 and z = mkz in
the inequality (3.4), we have

(3.11)
∣∣∣∣∣∣f(mnz∗)

m4n
− f(mnz)∗

m4n

∣∣∣∣∣∣ ≤ φ(0, 0, 0, 0,mnz)

|m|4n

for all z ∈ A . As n→∞ in the inequality (3.11), we have

L(z∗) = L(z)∗

for all z ∈ A . This means that L is a quartic Lie ∗-derivation. Now, we
will show that the quartic Lie ∗-derivation is unique. Hence we assume
L′ : A→ A is another quartic ∗-derivation satisfying the inequality (3.5).
Then

||L(a)− L′(a)|| =
1

|m|4n
||L(mna)− L′(mna)||

≤ 1

|m|4n
(
||L(mna)− f(mna)||+ ||f(mna)− L′(mna)||

)
≤ 1

|m|4n+1

∞∑
j=0

1

|m|4j
φ(mj+na, 0, 0, 0, 0)

=
1

|m|4
∞∑
j=n

1

|m|4j
φ(mja, 0, 0, 0, 0) ,

which tends to zero as k →∞ , for all a ∈ A . Thus L(a) = L′(a) for all
a ∈ A . Hence the uniqueness of L was proved, as claimed.

Corollary 3.3. Let θ , r be positive real number with r < 4 . Sup-
pose that f : A→M is an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ θ(||a||r + ||b||r)
||∆f(x, y) + f(z∗)− f(z)∗|| ≤ θ(||x||r + ||y||r + ||z||r)
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for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . Then there exists a unique quartic

Lie ∗-derivation L : A→M satisfying

||f(a)− L(a)|| ≤ θ||a||r

(|m|4 − |m|r)
for all a ∈ A .

Proof. On taking φ(a, b, x, y, z) = θ(||a||r+ ||b||r+ ||x||r+ ||y||r+ ||z||r)
in Theorem 3.2 for all a, b, x, y, z ∈ A , we have the desired results.

In the following corollaries, we will investigate the hyperstability for
the quartic Lie ∗-derivations.

Corollary 3.4. Let r be positive real number with r < 4 . Suppose
that f : A→M is an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r||y||r||z||r

for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation

on A .

Proof. If we take φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r||z||r) in

Theorem 3.2 for all a, b, x, y, z ∈ A , then we have φ̃(a, 0, 0, 0, 0) = 0 .
Hence (3.5) implies that f is a quartic Lie ∗-derivation on A .

Corollary 3.5. Let r be positive real number with r < 4 . Suppose
that f : A→M is an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r(||y||r + ||z||r)
for all µ ∈ T1

1
n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation

on A .

Proof. Assume that φ(a, b, x, y, z) = (||a||r+||x||r)(||b||r+||y||r+||z||r)
in Theorem 3.2 for all a, b, x, y, z ∈ A . Then φ̃(a, 0, 0, 0, 0) = 0 . Hence
the inequality (3.5) implies that f is a quartic Lie ∗-derivation on A .

The following statements are relative to the alternative of fixed point;
see [11] and [15]. By using this method, we will prove the Hyers-Ulam
stability.
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Theorem 3.6 ( The alternative of fixed point [11], [15] ). Suppose
that we are given a complete generalized metric space (Ω, d) and a
strictly contractive mapping T : Ω→ Ω with Lipschitz constant l . Then
for each given x ∈ Ω , either

d(T nx, T n+1x) =∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

1. d(T nx, T n+1x) <∞ for all n ≥ n0 ;
2. The sequence (T nx) is convergent to a fixed point y∗ of T ;
3. y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(T n0x, y) <∞} ;

4. d(y, y∗) ≤ 1
1−l d(y, Ty) for all y ∈ 4 .

Theorem 3.7. Let n0 be a positive integer. Suppose that f : A→M
is a continuous even mapping with f(0) = 0 . Assume that φ : A5 →
[0,∞) is a continuous mapping such that

(3.12) ||∆µf(a, b)|| ≤ φ(a, b, 0, 0, 0)

(3.13) ||∆f(x, y) + f(z∗)− f(z)∗|| ≤ φ(0, 0, x, y, z)

for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . If there is a constant l ∈ (0, 1) such

that

(3.14) φ(ma,mb,mx,my,mz) ≤ |m|4lφ(a, b, x, y, z)

then there exists a quartic Lie ∗-derivation L : A→M such that

(3.15) ||f(a)− L(a)|| ≤ 1

|m|4(1− l)
φ(a, 0, 0, 0, 0)

for all a, b, x, y, z ∈ A .

Proof. We will consider the following set

Ω = {g | g : A→ A , g(0) = 0} .
Then there is the generalized metric on Ω ,

d(g, h) = inf {λ ∈ (0,∞) | ‖ g(a)−h(a) ‖≤ λφ(a, 0, 0, 0, 0) , for all a ∈ A} .
It is not hard to prove that (Ω, d) is a complete space. A function
T : Ω→ Ω is defined by

(3.16) T (g)(a) =
1

m4
g(ma)
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for all a ∈ A . We know that there is an arbitrary constant with d(g, h) ≤
λ , for all g, h ∈ Ω , where λ ∈ (0, ∞) . Then

(3.17) ||g(a)− h(a)|| ≤ λφ(a, 0, 0, 0, 0)

for all a ∈ A . On taking a = ma in the inequality (3.17) and using the
inequality (3.14) and the equation (3.16), we get

||T (g)(a)− T (h)(a)|| =
1

|m|4
||g(ma)− h(ma)||

≤ 1

|m|4
λφ(ma, 0, 0, 0, 0) ≤ c l φ(a, 0, 0, 0, 0) .

This implies that

d(Tg, Th) ≤ λ l .

Hence we have that

d(Tg, Th) ≤ l d(g, h) ,

for all g, h ∈ Ω . This means that T is a strictly self-mapping of Ω with
the Lipschitz constant l . On taking µ = 1 , b = 0 in the inequality (3.12),
we have

|| 1

m4
f(ma)− f(a)|| ≤ 1

|m|4
φ(a, 0, 0, 0, 0)

for all a ∈ A . This means that

d(Tf, f) ≤ 1

|m|4
.

Now, We will apply to Theorem of the alternative of fixed point. Since
limn→∞ d(T nf, L) = 0 , we know that there exists a fixed point L of T
in Ω such that

(3.18) L(a) = lim
n→∞

f(mna)

m4n
,

for all a ∈ A . Hence

d(f, L) ≤ 1

1− l
d(Tf, f) ≤ 1

|m|4
1

1− l
.

Hence we may conclude that the inequality (3.15) holds. Since l ∈ (0, 1) ,
the inequality (3.14) implies that

(3.19) lim
n→∞

φ(mna,mnb,mnx,mny,mnz)

|m|4n
= 0 .
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Replacing a by mna and b by mnb in the inequality (3.12), we get

1

|m|4n
||∆µf(mna,mnb)|| ≤ φ(mna,mnb, 0, 0, 0)

|m|4n
.

On taking the limit as k → ∞ , we get ∆µf(a, b) = 0 and all µ ∈ T1
1
n0

.

The remains of this proof are analogous to the proof in Theorem 3.2.

Corollary 3.8. Let θ , r be real numbers with 0 < r < 4 . Suppose
that f : A→M is a mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ θ(||a||r + ||b||r)
||∆f(x, y) + f(z∗)− f(z)∗|| ≤ θ(||x||r + ||y||r + ||z||r)

for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . Then there exists a unique quartic

Lie ∗-derivation L : A→M satisfying

||f(a)− L(a)|| ≤ θ||a||r

|m|4(1− l)
for all a ∈ A .

Proof. The proof follows from Theorem 3.7 by taking φ(a, b, x, y, z) =
θ(||a||r + ||b||r + ||x||r + ||y||r + ||z||r) for all a, b, x, y, z ∈ A .

Next, we will prove the hyperstability for the quartic Lie ∗-derivations.

Corollary 3.9. Let r be a real number with 0 < r < 4 . Suppose
that f : A→M is an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r||y||r||z||r

for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation

on A .

Proof. If φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r||z||r) in Theo-

rem 3.7, then we get φ̃(a, 0, 0, 0, 0) = 0 . Thus we may conclude that f
is a quartic Lie ∗-derivation on A because of the inequality (3.15).

Corollary 3.10. Let r be a real number with 0 < r < 4 . Suppose
that f : A→M is an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r(||y||r + ||z||r)
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for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation

on A .

Proof. On letting φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r + ||z||r)
in Theorem 3.7, we get φ̃(a, 0, 0, 0, 0) = 0 . Thus f is a quartic Lie ∗-
derivation because of the inequality (3.15).
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