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ON A CLASSIFICATION OF WARPED PRODUCT

SPACES WITH GRADIENT RICCI SOLITONS

Sang Deok Lee, Byung Hak Kim∗, and Jin Hyuk Choi

Abstract. In this paper, we study Ricci solitons, gradient Ricci
solitons in the warped product spaces and gradient Yamabe solitons
in the Riemannian product spaces. We obtain the necessary and
sufficient conditions for the Riemannian product spaces to be Ricci
solitons. Moreover we classify the warped product space which ad-
mit gradient Ricci solitons under some conditions of the potential
function.

1. Introduction

A Riemannian metric g on a complete Riemannian manifold M is
called a Ricci soliton if there exists a smooth vector field X such that
the Ricci curvature tensor satisfies

(1) Ric+
1

2
LXg = ρg

for some constant ρ, where LX is the Lie derivative with respect to
X [2, 3, 5, 6, 9]. It is said that (M, g) or M is a Ricci soliton if the
metric g on M is a Ricci soliton. Evidently we see that an Einstein
metric becomes a Ricci soliton, but the converse is not true. The Ricci
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soliton is called shrinking if ρ > 0, steady if ρ = 0 and expanding if
ρ < 0. The metric of a Ricci soliton is useful in not only physics but
also mathematics, and often referred as quasi-Einstein [?]. If X = ∇h
for some function h on M , then M is called a gradient Ricci soliton.
The function h above is called the potential function. In this case, the
equation (1) can be rewritten as

(2) Ric+Hess h = ρg.

It is well known that when ρ ≤ 0 all compact solitons are necessarily
Einstein [6], and a Ricci soliton on a compact manifold has a constant
curvature in 2-dimension [?] as well as in 3-dimension [8]. Moreover a
Ricci soliton on a compact manifold is a gradient Ricci soliton [9], and
a compact shrinking soliton is always gradient [13].

In [11], we studied the gradient Ricci soliton in the warped product
space and proved that the base space of the warped product space with
a gradient Ricci soliton to be a gradient Ricci soliton or an Einstein
space is determined by the second derivative of the warping function.
As far as we know, there are no results for the warped products of two
Riemannian manifolds with general dimension and gradient Ricci soliton
related to potential function. In this sense, the considerations of the
warped products with gradient Ricci soliton satisfying some conditions
related to potential function are meaningful. Related these problems,
we get some useful results and classification theorem (see Theorem 3.3).

A Riemannian metric g on a Riemannian manifold M is called a
Yamabe soliton if there exist a smooth vector field X and a constant ρ
such that

(3) (r − ρ)g =
1

2
LXg,

where r is the scalar curvature of M . In particular, if X = ∇h for
some smooth function h, we call it the gradient Yamabe soliton [?].
The function h above is called the potential function. In this case, the
equation (3) can be rewritten as

(4) (r − ρ)g = ∇2h.

In Chapter 4, we studied gradient Yamabe soliton in M = R1 × B
for a Riemannian manifold B, and we get the necessary and sufficient
condition for M admits a gradient Yamabe soliton.



On a classification of warped product spaces with gradient Ricci solitons 629

2. Ricci solitons in the Riemannian product manifolds

Let (B, g) be an m-dimensional Riemannian manifold with a metric g
and let M = R×B be the product Riemannian manifold with the metric

g̃ =

(
1 0
0 g

)
. Then the Ricci curvature tensors S̃ and S of M and B,

respectively are given by Sab = Sab and the others are zero, where the
range of indices a, b, c,· · · is {2, 3, · · · ,m+ 1}.

Suppose that B is a Ricci soliton. Then there exists a smooth vector
field U = (ξ2, · · · , ξm+1) on B such that

Sab = ρgab −
1

2
(∇aξb +∇bξa),

for some constant ρ.

If we take ρ̃ = ρ and Ũ = (ξ̃1, ξ̃2, · · · , ξ̃m+1) = (ρt, ξ2, · · · , ξm+1), then
we obtain

(5)

S̃ab = Sab = ρgab − 1
2
(∇aξb +∇bξa) = ρ̃g̃ab − 1

2
(∇̃aξ̃b + ∇̃bξ̃a),

S̃a1 = 0 = −1
2
(∇̃aξ̃1 + ∇̃1ξ̃a),

S̃11 = 0 = ρ̃− 1
2
(∇̃1ξ̃1 + ∇̃1ξ̃1).

That is, M becomes a Ricci soliton.

Conversely, if we suppose that M is a Ricci soliton, then there exists

a smooth vector field Ṽ = (ξ̃1, ξ̃2, · · · , ξ̃m+1) on M such that

S̃ij = ρ̃g̃ij −
1

2
(∇̃iξ̃j + ∇̃j ξ̃i)

for some constant function ρ̃ on M , where the range of indices i,j,k,· · ·
is {1, 2, 3, · · · ,m+ 1}. So we have

(6)

S̃ab = ρ̃g̃ab − 1
2
(∇̃aξ̃b + ∇̃bξ̃a) = Sab,

S̃a1 = −1
2
(∇̃aξ̃1 + ∇̃1ξ̃a) = −1

2
(∂aξ̃1 + ∂1ξ̃a) = 0,

S̃11 = ρ̃− 1
2
(∇̃1ξ̃1 + ∇̃1ξ̃1) = ρ̃− ∂1ξ̃1 = 0.

From the third equation of (6), we can put

(7) ξ̃1 = ρ̃t+ h(x2, · · · , xm+1)
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for t ∈ R and some function h on B. Using the second equation of (6)

and (7), we see that ξ̃a is of the form

(8) ξ̃a = −hat+ ka,

where ha = ∂ah and ka = ka(x2, · · · , xm+1) is a function on B corre-

sponding to ξ̃a. Hence, the vector field Ṽ on M is given by

Ṽ = (ρ̃t+ h,−h2t+ k2, · · · ,−hm+1t+ km+1).

From the first equation of (6) and the fact that Sab − ρgab depends
only on B, we find that the equation Sab−ρgab = −1

2
(∇aξb+∇bξa) holds

for ρ = ρ̃ and ξa = ka. If we take the vector field V = (ξ2, · · · , ξm+1)
on B, then we see that B is a Ricci soliton. Thus, we have

Theorem 2.1. M = R × B is a Ricci soliton if and only if B is a
Ricci soliton.

Next, consider the case of M = R2 × B be the product Riemannian

manifold with the Riemannian metric g̃ =

(
δuv 0
0 gab

)
, where the range

of indices u, v is {1, 2} and the range of indices a,b,c,· · · is {3, 4, · · · ,m+
2}. Then, the Ricci curvature tensors S̃ and S of M and B, respectively,
are given by S̃ab = Sab and the others are zero.

Suppose that B is a Ricci soliton. Then there exists a smooth vec-
tor field U = (ξ3, · · · , ξm+2) on B such that Sab − ρgab = −1

2
(∇aξb +

∇bξa) for some constant ρ. Take ρ̃ = ρ and Ũ = (ξ̃1, ξ̃2, · · · , ξ̃m+2) =
(ρt1, ρt2, ξ3, · · · , ξm+2) , then we obtain

(9)

S̃ab = Sab = ρgab − 1
2
(∇aξb +∇bξa) = ρ̃g̃ab − 1

2
(∇̃aξ̃b + ∇̃bξ̃a),

S̃au = 0 = −1
2
(∇̃aξ̃u + ∇̃uξ̃a),

S̃uv = 0 = ρ̃δuv − 1
2
(∇̃uξ̃v + ∇̃v ξ̃u).

Hence we can state, if B is a Ricci soliton, then M = R2 × B is a
Ricci soliton.

Conversely, suppose that M = R2 × B is a Ricci soliton. Then, we
get

(10)

Sab = S̃ab = ρ̃gab − 1
2
(∂aξ̃b + ∂bξ̃a − 2

{
c
ab

}
ξ̃c),

∂aξ̃u + ∂uξ̃a = 0,

ρ̃δuv − 1
2
(∂uξ̃v + ∂v ξ̃u) = 0.
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for some constant ρ̃ on M , where ξ̃i is a component of the smooth vector
field Ṽ on M and the range of indices i, j, k, · · · is {1, 2, 3, · · · ,m + 2}.
Considering the case u = v in the third equation of (10), we obtain

(11) ξ̃u = ρ̃xu + hu(u),

where hu(u) is a function on M which corresponds to ξ̃u and the symbol

(u) means having no xu-variable.
From the third equation of (10) and (11), we obtain

(12) ∂uh
v
(v) = −∂vhu(u),

from which we see that ∂uh
v
(v) is a function on B. Thus, we can denote

(13) ∂uh
v
(v) = H(u,v),

whereH(u,v) means a functionH having no xu−variable and xv−variable.
By use of the equations (11) and (13), we obtain

(14) hu(u) = −H(u,v)xv +Ku
(1,2),

and

(15) ξ̃u = ρ̃xu −H(u,v)xv +Ku
(1,2), (u 6= v),

from the equations (11) and (14).
The second equation of (10) and (15) give rise to

(16) ξ̃a = −∂aK1
(1,2)x1 − ∂aK2

(1,2)x2 + La
(1,2),

and the first equation of (10) gives

Sab − ρ̃gab = −1

2
(∂aξ̃b + ∂bξ̃a − 2

{
c
ab

}
ξ̃c).

Moreover, we get

Ṽ = (ρ̃x1 −H(1,2)x2 +K1
(1,2), ρ̃x2 −H(2,1)x1 +K2

(1,2),

−∂3K1
(1,2)x1−∂3K2

(1,2)x2+L
3
(1,2), · · · ,−∂m+2K

1
(1,2)x1−∂m+2K

2
(1,2)x2+L

m+2
(1,2) )

by means of the equations (15) and (16).
If we take V = (ξ3, · · · , ξm+2) such that ξa = La

(1,2), then we get

Sab − ρgab = −1

2
(∇aL

b
(1,2) +∇bL

a
(1,2)),

for ρ = ρ̃. Hence we see that if M = R2 × B is a Ricci soliton, then B
is a Ricci soliton. Thus we get
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Theorem 2.2. M = R2 × B is a Ricci soliton if and only if B is a
Ricci soliton.

In general, if we assume that the Riemannian products M = B×F is a
Ricci soliton, then there exists vector fieldX = (ξ̃1, · · · , ξ̃n, ξ̃n+1, · · · , ξ̃n+p)

on M and constant ρ̃ such that S̃ij = ρ̃g̃ij − (∇̃iξ̃j + ∇̃j ξ̃i)/2, that is

Sab = ρ̃gab − (∇̃aξ̃b + ∇̃bξ̃a)/2,

∇̃aξ̃x + ∇̃xξ̃a = 0,

S̄xy = ρ̃gxy − (∇̃xξ̃y + ∇̃y ξ̃x)/2.

If we take ρ = ρ̃ and XB = (ξ̃1, · · · , ξ̃n), then we see that B is a
Ricci soliton. Similarly we find F is Ricci soliton with ρ̄ = ρ̃ and XF =
(ξ̃n+1, · · · , ξ̃n+p).

Conversely, if we assume thatB is a Ricci soliton withXB = (ξ1, · · · , ξn)
and constant ρ on B , and F is a Ricci soliton withXF = (ξn+1, · · · , ξn+p)
and constant ρ̄ on F . then we can express

Sab = ρgab − (∇aξb +∇bξa)/2, S̄xy = ρ̄gxy − (∇̄xξy + ∇̄yξx)/2.

Now we take ρ̃ = ρ = ρ̄ and X = (XB, XF ) on M , then we have

S̃ab = Sab = ρ̃g̃ab − (∇̃aξb + ∇̃bξa)/2,

S̃ax = 0 = ρ̃g̃ax − (∇̃aξx + ∇̃xξa)/2,

S̃xy = S̄xy = ρ̃g̃xy − (∇̃xξy + ∇̃yξx)/2,

that is, S̃ij = ρ̃g̃ij − (∇̃iξj + ∇̃jξi)/2. Hence we see that M = B × F is
a Ricci soliton. Thus we have

Theorem 2.3. Let M = B × F be a Riemannian product of B and
F . Then M is a Ricci soliton if and only if B and F are Ricci solitons
with ρ = ρ̄.

3. Gradient Ricci solitons in the warped product spaces

Let (B, g) and (F, ḡ) be n and p-dimensional Riemannian manifolds
with Riemanian metric g and ḡ respectively. Then the warped product
space M = B ×f F with a warping function f has the Riemannian
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metric G =

(
g 0
0 f 2ḡ

)
. Hence the components of Ricci tensors are

given by [1, 10,11]

S̃ab = Sab −
p

f
∇afb,

S̃ax = 0,

S̃xy = S̄xy − f(4f)ḡxy − (p− 1)‖|fe‖|2ḡxy,
where S̃ , S and S̄ are the Ricci tensors of M,B and F respectively, and
4f is the Laplacian of f for g.

Suppose that M = B ×f F is a gradient Ricci solution. Then, we
have

S̃ab = ρ̃g̃ab − ∇̃a∇̃bh = ρ̃gab −∇a∇bh,

S̃ax = ρ̃g̃ax − ∇̃a∇̃xh = −∂ahx +
fa
f
hx,

S̃xy = ρ̃g̃xy − ∇̃x∇̃yh = ρ̃f 2ḡxy − (∇̄x∇̄yh+ ff chcḡxy),

for some constant ρ̃ and some function h on M .
Then we have

(17) Sab −
p

f
∇afb = ρ̃gab −∇ahb,

(18) ∂ahx =
fa
f
hx,

(19) S̄xy = (ρ̃f 2 + f(4f) + (p− 1)‖|fe‖|2 − ff chc)ḡxy − ∇̄x∇̄yh.

Assume that the partial derivative of h with respect to all x vanishes,
then h becomes a function on B. We see that F is an Einstein space
because the coefficient of ḡxy in (19) is constant along F . Thus we have

Theorem 3.1. Let M = B ×f F be a gradient Ricci soliton with a
potential function h. If the partial derivative of h with respect to all x
vanishes, then F becomes an Einstein space.

If hx 6= 0 for all x, then equation (18) becomes ∂ahx

hx
= fa

f
. Hence

∂a(lnhx − lnf) = 0, that is we can lnhx

f
= l for some function l on F .

Therefore hx = fel, which induces h = fk for some function k on F .
Since hx 6= 0 for all x and f depends on B, kx 6= 0. Hence we have
ha = fak, ∇bha = k∇bfa and the equation (17) becomes
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(20) Sab −
p

f
∇afb − ρ̃gab = k∇bfa.

If we assume that ∇bfa 6= 0 for some a and b , then it leads to a con-
tradiction in the equation (20) because the left hand side of (20) only
depends on B and k the right hand side depends on B and F . Hence
we see that ∇bfa = 0 for all a and b and that B becomes an Einstein
space from the equation (20). Moreover ∇bfa = 0 implies Laplacian of
f equal to zero. So if B is compact, then f becomes a constant, that is,
M is the Riemannian product space. Thus we have

Theorem 3.2. Let M = B ×f F be a gradient Ricci soliton with a
potential function h. If hx 6= 0 for all x, then B becomes an Einstein
space. In this case ∇bfa = 0 for all a and b, and M is the Riemannian
product space if B is compact.

On the other hand, if the partial derivative ha = 0 for all a, then
h only depends on F and fahx = 0 from (18). Hence f is a constant
function or h is a constant function. The fact f is a constant means
that M is the Riemannian product of B and F , moreover B is Einstein
and F becomes a gradient Ricci soliton due to (17) and (19). If h is a
constant function, then we see that the Ricci curvature on B has the
form Sab = ρ̃gab + p

f
∇afb and F is Einstein from (19). Moreover if f

and h are constants, then the Ricci curvatures of B and F are given by
Sab = ρ̃gab and S̄xy = ρ̃f 2ḡxy, respectively. Since the metric G on M is

given by G =

(
g 0
0 f 2ḡ

)
, we see that S̃ = ρ̃G , that is, M is Einstein.

Thus we have

Theorem 3.3. Let M = B ×f F be a gradient Ricci soliton with a
potential function h. If the partial derivative ha = 0 for all a, then one
of the following three cases occurs.
(a) M is the Riemannian product of an Einstein space and a gradient
Ricci soliton space.
(b) F is Einstein.
(c) M is the Riemannian product of two Einstein spaces, and moreover
M is an Einstein space.
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4. Gradient Yamabe solitons in the Riemannian product man-
ifolds

At first, we consider the gradient Yamabe soliton in the product space
M = R × B with a Riemannian metric g̃ and a potential function h,
where (B, g) is an m-dimensional Riemannian manifold. Then we see
that

(21)

(r̃ − ρ̃) = ∂1h1,
∂1ha = 0,

(r̃ − ρ̃)gab = ∇a∇bh,
r̃ = r,

where r̃ and r are scalar curvatures of M and B respectively, and
the range of indices a, b, c, · · · is {2, 3, · · · ,m + 1}. From the second
equation of (21), we see that the potential function h is decomposed
into h(t, x1, x2, · · · , xm) = l(t) + k(x1, · · · , xm) for functions l on R
and k on B. Then the third equation of (21) can be rewritten as
(r̃ − ρ̃)gab = ∇a∇bk, that is, B is a gradient Yamabe soliton. More-
over, from (21), we see that ∂1l1 = ∂1h1 = r̃ − ρ̃ = 1

m
gab∇a∇bh. Since

∂1l1 only depends on R and the right hand side is a quantity of B, r̃− ρ̃
becomes constant, that is, r = r̃ is constant.

Conversely, let (B, g) be a gradient Yamabe soliton with a constant
scalar curvature r. Then (r−ρ)gab = ∇a∇bk with a potential function k
and r̃ = r is constant. Take the function h onM as h(t, x1, x2, · · · , xm) =

(r − ρ) t
2

2
+ k(x1, · · · , xm) and ρ̃ = ρ. Then we get

(r̃ − ρ̃) = ∂1h1, ∂1ha = 0,
(r̃ − ρ̃)g̃ab = ∇̃a∇̃bh,
that is, M = R1×B becomes a gradient Yamabe soliton. Thus we have

Theorem 4.1. M = R1×B is a gradient Yamabe soliton if and only
if B is a gradient Yamabe soliton with a constant scalar curvature.
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