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SPECTRAL THEOREMS ASSOCIATED TO THE DUNKL

OPERATORS

Hatem Mejjaoli

Abstract. In this paper, we characterize the support for the Dunkl
transform on the generalized Lebesgue spaces via the Dunkl resol-
vent function. The behavior of the sequence of Lp

k−norms of iterated
Dunkl potentials is studied depending on the support of their Dunkl
transform. We systematically develop real Paley-Wiener theory for
the Dunkl transform on Rd for distributions, in an elementary treat-
ment based on the inversion theorem. Next, we improve the Roe’s
theorem associated to the Dunkl operators.

1. Introduction

We consider the differential-difference operators Tj, j = 1, 2, ..., d,
attached to a root system R and a multiplicity function k, introduced
by Dunkl in [7], and called the Dunkl operators in the literature.

The Dunkl theory is based on the Dunkl kernel K(iλ, .), λ ∈ Cd, which
is the unique analytic solution of the system

Tju(x) = iλju(x), j = 1, 2, ..., d,

satisfying the normalizing condition u(0) = 1.
With the Dunkl kernel K(iλ, .), Dunkl defined in [9] the Dunkl trans-

form FD and established some of its properties (see also [11]).
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The spectral theorems associated with the partial derivatives opera-
tors are of the most useful subjects in harmonic analysis. In this paper
we present only three subjects.

The first subject of these theorems is one of the fundamental ques-
tions in Fourier analysis and abstract harmonic analysis: the real Paley-
Wiener theorem. The fundamental theorem given by Bang (cf. [4]) can
be stated as follows. Let f be a C∞-function on R such that for all
n ∈ N, the function dn

dxn
f belongs to the Lebesgue space Lp(R), then the

limit Rf = limn→∞ ‖ d
n

dxn
f‖1/np exists and we have

Rf := sup
{
|λ| : λ ∈ suppF(f)

}
,

where F(f) is the classical Fourier transform of f . Next the analogue
of this theorem was established and improved for many other integral
transforms, for examples (cf. [1, 6, 14,16–18,23]).

The second subject concerning spectral theorems is the study of tem-
pered distributions with spectral gaps. More precisely a tempered dis-
tributions on R whose Fourier transform is supported in an interval
[−M,M ], where M > 0, can be characterized by the behaviour of its
successive derivatives. On the other hand, a tempered distribution on R
whose Fourier transform vanishes in an interval (−M,M), where M > 0,
can be characterized by the behaviour of a particular sequence of suc-
cessive antiderivatives. This subject was studied for many other integral
transforms, for examples (cf. [2, 3, 17,18]).

Third subject of spectral theorems, is Roe’s theorem. The fundamen-
tal theorem given by Roe (cf. [19]) can be stated as follows. If a function
and all its derivatives and integrals are absolutely uniformly bounded,
then the function is a sine function with period 2π. This result has
been studied and generalized, see [2, 13, 15–18, 21] including generaliza-
tions to differential and differential-difference operators with constant
coefficients in higher dimensions.

Motivated by the treatment in the Euclidean setting, we will derive in
this paper new real Paley-Wiener theorems for the Dunkl transform, on
the generalized Lebesgue spaces and on the tempered distribution space
S ′(Rd), and we improve the Roe’s theorem in the context of the Dunkl
operators.

The outline of this paper is as follow: In §2 we recall the main results
about the harmonic analysis associated with the Dunkl operators. In §3
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we introduce the Dunkl resolvent function as a solution of the general-
ized Poisson’s equation associated to the Dunkl-Laplace operator on the
generalized Wiener space. Next, we extend the definition of the Dunkl
resolvent function on some subspace of the generalized Lebesgue space
L2
k(Rd). The §4 is devoted to characterize the support for the Dunkl

transform on the generalized Lebesgue space L2
k(Rd) via the Dunkl re-

solvent function. In §5 we solve the previous problem on the generalized
Lebesgue space Lpk(R). In §6 we study the generalized tempered distri-
butions with spectral gaps. Finally, the purpose of the last section is to
improve and generalize a version of Roe’s theorem for Dunkl operators
from [15].

2. Preliminaries

This section gives an introduction to the theory of Dunkl operators,
Dunkl kernel and Dunkl transform. Main references are [7–9,11].

We consider Rd with the Euclidean scalar product 〈, 〉 and ||x|| =√
〈x, x〉. For α in Rd\{0}, let σα be the reflection in the hyperplane

Hα ⊂ Rd orthogonal to α, i.e.

(2.1) σα(x) = x− 2
〈α, x〉
||α||2

α.

A finite set R ⊂ Rd\{0} is called a root system if R∩R.α = {α,−α}
and σαR = R for all α ∈ R. For a given root system R the reflections
σα, α ∈ R, generate a finite group W ⊂ O(d), called the reflection group
associated with R. We fix a positive root system R+ = {α ∈ R :
〈α, β〉 > 0} for some β ∈ Rd\∪α∈RHα. We will assume that 〈α, α〉 = 2
for all α ∈ R+. A function k : R −→ C on a root system R is called a
multiplicity function if it is invariant under the action of the associated
reflection group W . For abbreviation, we introduce the index

(2.2) γ = γ(k) =
∑
α∈R+

k(α).

Moreover, let ωk denotes the weight function

(2.3) ωk(x) =
∏
α∈R+

|〈α, x〉|2k(α),
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which is invariant and homogeneous of degree 2γ. We introduce the
Mehta-type constant

(2.4) ck =

∫
Rd
e−
||x||2

2 ωk(x) dx.

In the following we denote by

C(Rd) the space of continuous functions on Rd.
Cp(Rd) the space of functions of class Cp on Rd.
Cp
b (Rd) the space of bounded functions of class Cp.
E(Rd) the space of C∞-functions on Rd.
S(Rd) the Schwartz space of rapidly decreasing functions on Rd.
D(Rd) the space of C∞-functions on Rd which are of compact support.
S ′(Rd) the space of temperate distributions on Rd.

The Dunkl operators Tj, j = 1 , ..., d, on Rd associated with the
finite reflection group W and multiplicity function k are given by

(2.5) Tjf(x) =
∂f

∂xj
(x) +

∑
α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉
, f ∈ C1(Rd).

Some properties of the Tj, j = 1, ..., d, are given in the following :
For all f and g in C1(Rd) with at least one of them is W -invariant,

we have

(2.6) Tj(fg) = (Tjf)g + f(Tjg), j = 1, ..., d.

For f in C1
b (Rd) and g in S(Rd) we have

(2.7)∫
Rd
Tjf(x)g(x)ωk(x) dx = −

∫
Rd
f(x)Tjg(x)ωk(x) dx, j = 1, ..., d.

We define the Dunkl-Laplace operator 4k on Rd by

4kf(x) :=

d∑
j=1

T 2
j f(x) = 4f(x) + 2

∑
α∈R+

k(α)
(〈∇f(x), α〉
〈α, x〉

− f(x)− f(σα(x))

〈α, x〉2
)
,

where 4 and ∇ are the usual Euclidean Laplacian and nabla operators
on Rd, respectively.

For y ∈ Rd, the system

(2.8)

{
Tju(x, y) = yju(x, y), j = 1, ..., d,
u(0, y) = 1,
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admits a unique analytic solution on Rd, which will be denoted by
K(x, y) and called Dunkl kernel. This kernel has a unique holomor-
phic extension to Cd × Cd.
The Dunkl kernel possesses the following properties:

i) For z, t ∈ Cd, we have K(z, t) = K(t, z);K(z, 0) = 1 and K(λz, t) =
K(z, λt) for all λ ∈ C.

ii) For all ν ∈ Nd, x ∈ Rd and z ∈ Cd we have

(2.9) |Dν
zK(x, z)| ≤ ||x|||ν| exp(||x|| ||Rez||),

with

Dν
z =

∂|ν|

∂zν11 · · · ∂z
νd
d

and |ν| = ν1 + · · ·+ νd.

In particular for all x, y ∈ Rd:

|K(−ix, y)| ≤ 1.

Notation. We denote by Lpk(Rd) the space of measurable functions on
Rd such that

||f ||Lpk(Rd) :=
(∫

Rd
|f(x)|pωk(x) dx

) 1
p
<∞, if 1 ≤ p <∞,

||f ||L∞k (Rd) := ess sup
x∈Rd
|f(x)| <∞.

The Dunkl transform of a function f in L1
k(Rd) is given by

(2.10) FD(f)(y) =
1

ck

∫
Rd
f(x)K(−iy, x)ωk(x)dx, for all y ∈ Rd.

In the following we give some properties of this transform (cf. [9, 11]).
i) For f in L1

k(Rd) we have

(2.11) ||FD(f)||L∞k (Rd) ≤
1

ck
||f ||L1

k(Rd).

ii) Inversion formula: Let f be a function in L1
k(Rd), such that

FD(f) ∈ L1
k(Rd). Then

(2.12) F−1D (f)(x) = FD(f)(−x), a.e. x ∈ Rd.

iii) For f in S(Rd) we have

(2.13) FD(Tjf)(y) = iyjFD(f)(y), for all j = 1, ..., d and y ∈ Rd.
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Proposition 2.1. The Dunkl transform FD is a topological isomor-
phism from S(Rd) onto itself. If we put for f in S(Rd)

(2.14) FD(f)(y) = FD(f)(−y), y ∈ Rd,

we have
FDFD = FDFD = Id.

Proposition 2.2. i) Plancherel formula for FD.
For all f in S(Rd) we have

(2.15)

∫
Rd
|f(x)|2ωk(x) dx =

∫
Rd
|FD(f)(ξ)|2ωk(ξ) dξ.

ii) Plancherel theorem for FD.
The Dunkl transform f → FD(f) can be uniquely extended to an iso-
metric isomorphism on L2

k(Rd).

Definition 2.1. Let y be in Rd. The Dunkl translation operator
f 7→ τyf is defined on S(Rd) by

(2.16) FD(τyf)(x) = K(ix, y)FD(f)(x), for all x ∈ Rd.

Using the Dunkl translation operator, we define the Dunkl convo-
lution product of functions as follows (see [22,24]).

Definition 2.2. The Dunkl convolution product of f and g in S(Rd)
is the function f ∗D g defined by

(2.17) f ∗D g(x) =

∫
Rd
τxf(−y)g(y)ωk(y)dy, for all x ∈ Rd.

This convolution is commutative and associative and satisfies the fol-
lowing properties (see [22]).

Proposition 2.3. i) For f and g in D(Rd)( resp. S(Rd)) the function
f ∗D g belongs to D(Rd)( resp. S(Rd)) and we have

(2.18) FD(f ∗D g)(y) = FD(f)(y)FD(g)(y), for all y ∈ Rd.

ii) Let 1 ≤ p, q, r ≤ ∞, such that 1
p

+ 1
q
− 1

r
= 1. If f is in Lpk(Rd) and

g is a radial element of Lqk(Rd), then f ∗D g ∈ Lrk(Rd) and we have

(2.19) ‖f ∗D g‖Lrk(Rd) ≤ C ‖f‖Lpk(Rd) ‖g‖Lqk(Rd) .

iii) Let W = Zd2. We have the same result for all f ∈ Lpk(Rd) and
g ∈ Lqk(Rd).
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Definition 2.3. i) The Dunkl transform of a distribution τ in S ′(Rd)
is defined by

(2.20) 〈FD(τ), φ〉 = 〈τ,FD(φ)〉, φ ∈ S(Rd).

ii) The Dunkl transform of f in Lpk(Rd) denoted also by FD(f), is
defined by

〈FD(f), φ〉 = 〈FD(Tf ), φ〉 = 〈Tf ,FD(φ)〉, φ ∈ S(Rd).

Thus from (2.20) we have

〈FD(f), φ〉 =

∫
Rd
f(x)FD(φ)(x)ωk(x)dx.

Proposition 2.4. The Dunkl transform FD is a topological isomor-
phism from S ′(Rd) onto itself.

Let τ be in S ′(Rd). We define the distribution Tjτ , j = 1, ..., d, by

〈Tjτ, ψ〉 = −〈τ, Tjψ〉, for all ψ ∈ S(Rd).

Thus we deduce

(2.21) 〈4kτ, ψ〉 = 〈τ,4kψ〉, for all ψ ∈ S(Rd).

These distributions satisfy the following properties

FD(Tjτ) = iyjFD(τ), j = 1, ..., d.(2.22)

FD(4kτ) = −||y||2FD(τ).(2.23)

In the following Tf will be denoted by f .

3. Generalized Poisson’s equation for the Dunkl-Laplace op-
erator

For x, y ∈ Rd and t > 0, we put

(3.1) pt(x, y) =
1

(2t)γ+
d
2 ck

e−
||x||2+||y||2

4t K(
x√
2t
,
y√
2t

).

For fixed y ∈ Rd, the function u(x, t) = pt(x, y) is solution of the heat
equation:

∂u

∂t
(x, t)−4ku(x, t) = 0, on Rd × (0,∞).
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The function pt has the following properties

(3.2) ∀ t > 0,

∫
Rd
pt(x, y)ωk(y)dy = 1.

(3.3) ∀ t > 0, pt(x, y) ≤ 1

(2t)γ+
d
2 ck

e−
(||x||−||y||)2

4t .

(3.4) ∀ t > 0, pt(x, y) =
1

c2k

∫
Rd
e−t||ξ||

2

K(ix, ξ)K(−iy, ξ)ωk(ξ)dξ.

Proposition 3.1. Let µ ∈ C with Reµ ≥ 0. The integral Gµ(x, y) =∫ ∞
0

e−tµpt(x, y)dt is finite for x 6= y in Rd and Reµ > 0. If Reµ = 0, the

function Gµ is finite for x 6= y in Rd if and only if 2γ + d > 2.

Proof. The proof follows immediately from the relation (3.3).

Notation. We define the generalized Wiener space Wk(Rd) as follows:

Wk(Rd) :=
{
f ∈ L1

k(Rd) : FD(f) ∈ L1
k(Rd)

}
.

Let µ ∈ C, we say that µ satisfies the hypothesis (H) if

(H)

 Reµ > 0,
or

Reµ = 0 and 2γ + d > 2.

Proposition 3.2. Let µ ∈ C, we assume that µ satisfies the hypoth-
esis (H). Let f be in Wk(Rd). The function

Rµf(x) =

∫
Rd
Gµ(x, y)f(y)ωk(y)dy,

called the Dunkl resolvent function of f , is bounded, of class C2 and
satisfies the generalized Poisson’s equation

(−4k + µ)u = f.

Proof. Let us first prove that Rµ is well defined and bounded. We
can assume f ≥ 0 and µ ≥ 0. Fubini’s theorem for positive functions
gives that

Rµf(x) =

∫ ∞
0

∫
Rd
e−tµpt(x, y)f(y)ωk(y)dydt.
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From (3.4), we can write

Rµf(x) =
1

c2k

∫ ∞
0

∫
Rd

∫
Rd
e−t(µ+||ξ||

2)K(ix, ξ)K(−iy, ξ)f(y)ωk(ξ)ωk(y)dξdydt.

Now using relation (2.9) and the hypothesis on f , we first obtain∫
Rd

∫
Rd
e−t(µ+||ξ||

2)|K(ix, ξ)K(−iy, ξ)f(y)|ωk(ξ)ωk(y)dξdy ≤

∫
Rd

∫
Rd
e−t(µ+||ξ||

2)f(y)ωk(ξ)ωk(y)dξdy <∞.

From Fubini’s theorem and relation (2.10), we get

(3.5) Rµf(x) =
1

ck

∫ ∞
0

∫
Rd
e−t(µ+||ξ||

2)K(ix, ξ)FD(f)(ξ)ωk(ξ)dξdt.

So

|Rµf(x)| ≤ 1

ck

∫
Rd

∫ ∞
0

e−t(µ+||ξ||
2)|FD(f)(ξ)|ωk(ξ)dξdt

≤ 1

ck

∫
Rd

|FD(f)(ξ)|
µ+ ‖ξ‖2

ωk(ξ)dξ <∞.

Thus the function Rµf is well defined and bounded on Rd. Now, if
we apply Fubini’s theorem to the equality (3.5), we obtain

(3.6) Rµf(x) =
1

ck

∫
Rd
K(ix, ξ)

FD(f)(ξ)

µ+ ‖ξ‖2
ωk(ξ)dξ.

Moreover it is easy to see that the preceding equality is true for µ ∈
C such that µ satisfies the hypothesis (H). Using relation (2.8), the
fact that 4k,xK(ix, ξ) = −||ξ||2K(ix, ξ) and the hypothesis on f , the
theorem of derivation under the integral sign gives that

(−4k,x + µ)Rµf(x) =
1

ck

∫
Rd
K(ix, ξ)FD(f)(ξ) ωk(ξ)dξ.

Thus we obtain the result from relation (2.12).

Remark 3.1. If µ = 0 the function R0f is called the Dunkl potential
of f . (Cf. [10]).

Definition 3.1. Let µ ∈ C. We denote by

Bk,µ(Rd) =

{
f ∈ L2

k(Rd) :
FD(f)(ξ)

µ+ ‖ξ‖2
∈ L2

k(Rd)

}
.
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Remark 3.2. i) From (3.6) we see that for µ ∈ C such that µ satisfies
the hypothesis (H)

(3.7) Rµf = F−1D (
FD(f)(ξ)

µ+ ‖ξ‖2
), f ∈ Wk(Rd).

ii) It is easy to see that Wk(Rd) ⊂ L2
k(Rd).

iii) As

|| FD(f)

µ+ ‖ξ‖2
||2L2

k(Rd)
=

∫
Rd

|FD(f)(ξ)|2

(Reµ+ ‖ξ‖2)2 + (Imµ)2
ωk(ξ)dξ.

Then we deduce that:
- If Imµ 6= 0, we have Bk,µ(Rd) = L2

k(Rd).
- If Imµ = 0 and Reµ > 0, we have Bk,µ(Rd) = L2

k(Rd).
- If Imµ = 0 and Reµ ≤ 0, we have Bk,µ(Rd) 6= ∅. Indeed, let ϕ be in
L2
k(Rd), we put f = FD(1Bc(0,√−Reµ+1)ϕ). Thus it is clear that f belongs

to Bk,µ(Rd).

Definition 3.2. Let µ ∈ C. Let f be in Bk,µ(Rd), we extend the
definition of the generalized resolvent function Rµf as the inverse Dunkl-

Plancherel transform of FD(f)
µ+‖ξ‖2 .

Proposition 3.3. Let µ ∈ C. If f is in Bk,µ(Rd), then we have

(3.8) (−4k + µ)Rµf = f.

Proof. Let f be in Bk,µ(Rd). For all ϕ in S(Rd) we have from the
relations (2.20), (2.21)

〈FD((−4k + µ)Rµf), ϕ〉 = 〈(−4k + µ)Rµf,FD(ϕ)〉
= 〈Rµf, (−4k + µ)FD(ϕ)〉.

Now using relation (2.23) we obtain

〈FD((−4k + µ)Rµf), ϕ〉 =

∫
Rd
Rµf(y)FD

(
(||x||2 + µ)ϕ

)
(y)ωk(y)dy.

Finally the Dunkl-Plancherel formula gives that

〈FD((−4k + µ)Rµf), ϕ〉 =

∫
Rd

FD(f)(x)

||x||2 + µ
(||x||2 + µ)ϕ(x)ωk(x)dx

= 〈FD(f), ϕ〉.
Thus

FD((−4k + µ)Rµf) = FD(f).

The result is proved.
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Corollary 3.4. Let f be in L2
k(Rd) such that

FD(f)(ξ)

(µ+ ‖ξ‖2)n
belongs

to L2
k(Rd) for some positive integer n, then (−4k+µ)n(Rn

µf) = f , where
Rn
µ = Rµ ◦ ... ◦Rµ.

Proof. From Proposition 3.3 it follows that if f is in Bk,µ(Rd), then

(−4k + µ)(Rµf) = f.

Hence by induction, one can show that if
FD(f)(ξ)

(µ+ ‖ξ‖2)n
is in L2

k(Rd) for

some positive integer n, then

(−4k + µ)nRn
µf = f.

4. Characterization for the support of the Dunkl transform
on L2

k(Rd) via the Dunkl resolvent function

Let µ ∈ C. We begin this section by the following definition and
remark.

σµ = inf
{
|µ+‖ξ‖2| : ξ ∈ suppFD(f)

}
, σ̃µ = inf

{
|µ+‖ξ‖2| : ξ ∈ Rd

}
.

Remark 4.1. It is easy to see that

i) σµ ≥ σ̃µ and σ̃µ =

{
|Imµ| if Reµ ≤ 0
|µ| if Reµ > 0

.

ii) When Reµ ≤ 0 the condition σµ > σ̃µ implies that FD(f) vanishes
on some neighborhood of ξ0 with ||ξ0||2 = -Reµ.

iii) When Reµ > 0, the condition σµ > σ̃µ implies that FD(f) vanishes
on some neighborhood of 0.

Lemma 4.1. Let f be in L2
k(Rd) such that

FD(f)(ξ)

(µ+ ‖ξ‖2)n
belongs to

L2
k(Rd) for any n ∈ N. Then

(4.1) lim
n→∞

∥∥∥∥ FD(f)(ξ)

(µ+ ‖ξ‖2)n

∥∥∥∥1/n
L2
k(Rd)

=
1

σµ

where we set
1

0
=∞, for the sake of convention.
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Proof. We divide the proof into two cases.
First case : σµ = 0. Then for any ε > 0,∫

| ‖ξ‖2+µ|<ε
|FD(f)(ξ)|2ωk(ξ)dξ > 0.

Therefore,∥∥∥ FD(f)(ξ)

(µ+ ‖ξ‖2)n
∥∥∥2
L2
k(Rd)

=

∫
Rd

|FD(f)(ξ)|2

|µ+ ‖ξ‖2|2n
ωk(ξ)dξ

≥
∫
| ‖ξ‖2+µ|<ε

|FD(f)(ξ)|2

|µ+ ‖ξ‖2|2n
ωk(ξ)dξ

≥ 1

ε2n

∫
| ‖ξ‖2+µ|<ε

|FD(f)(ξ)|2ωk(ξ)dξ,

that yields

lim inf
n→∞

∥∥∥ FD(f)(ξ)

(µ+ ‖ξ‖2)n
∥∥∥1/n
L2
k(Rd)

≥ lim inf
n→∞

1

ε

{∫
|µ+‖ξ‖2|<ε

|FD(f)(ξ)|2ωk(ξ)dξ
}1/2n

=
1

ε
.

Because ε > 0 is arbitrary, we obtain

lim inf
n→∞

∥∥∥ FD(f)(ξ)

(µ+ ‖ξ‖2)n
∥∥∥1/n
L2
k(Rd)

=∞.

Second case : σµ > 0. We have∥∥∥ FD(f)(ξ)

(µ+ ‖ξ‖2)n
∥∥∥2
L2
k(Rd)

=

∫
Rd

|FD(f)(ξ)|2

|µ+ ‖ξ‖2|2n
ωk(ξ)dξ

=

∫
σµ<|µ+‖ξ‖2|<∞

|FD(f)(ξ)|2

|µ+ ‖ξ‖2|2n
ωk(ξ)dξ

≤ 1

σ2n
µ

∫
σµ<|µ+‖ξ‖2|<∞

|FD(f)(ξ)|2ωk(ξ)dξ

≤ 1

σ2n
µ

∫
Rd
|FD(f)(ξ)|2ωk(ξ)dξ =

‖FD(f)‖2
L2
k(Rd)

σ2n
µ

.

Hence,

lim sup
n→∞

∥∥∥∥ FD(f)(ξ)

(µ+ ‖ξ‖2)n

∥∥∥∥1/n
L2
k(Rd)

≤ lim sup
n→∞

1

σµ
‖FD(f)‖1/n

L2
k(Rd)

=
1

σµ
.
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On the other hand, from the definition of σµ, for any ε > 0∫
σµ<| ‖ξ‖2+µ|<σµ+ε

|FD(f)(ξ)|2ωk(ξ)dξ > 0.

Therefore,∥∥∥ FD(f)(ξ)

(‖ξ‖2 + µ)n

∥∥∥2
L2
k(Rd)

=

∫
Rd

|FD(ξ)|2ωk(ξ)dξ
| ‖ξ‖2 + µ|2n

≥
∫
σµ<| ‖ξ‖2+µ|<σµ+ε

|FD(f)(ξ)|2

| ‖ξ‖2 + µ|2n
ωk(ξ)dξ

≥ 1

(σµ + ε)2n

∫
σµ<| ‖ξ‖2+µ|<σµ+ε

|FD(f)(ξ)|2ωk(ξ)dξ

that yields

lim inf
n→∞

∣∣∣ FD(f)(ξ)

(µ+ ‖ξ‖2)n
∥∥∥1/n
L2
k(Rd)

≥ lim inf
n→∞

1

σµ + ε

{∫
σµ<|µ+‖ξ‖2|<σµ+ε

|FD(f)(ξ)|2ωk(ξ)dξ

}1/2n

=
1

σµ + ε
.

Because ε > 0 is arbitrary, the inequality (4.1) follows. Lemma 4.1 is
thus proved.

The following theorem describes the image of a function g ∈ L2
k(Rd)

that vanishes in a neighborhood of a point ξ0 under the Dunkl transform.

Theorem 4.2. i) For f ∈ L2
k(Rd) let g = FD(f), then g vanishes in a

neighborhood of ξ0 if and only if Rn
−‖ξ0‖2f ∈ L

2
k(Rd) for all n = 0, 1, 2, ..,

and

(4.2) lim
n→∞

‖Rn
−‖ξ0‖2f‖

1/n

L2
k(Rd)

=
1

σ−‖ξ0‖2
<∞.

ii) For f ∈ L2
k(Rd) let g = FD(f), then g vanishes in a neighborhood

of ξ0 if and only if f ∈ L2
k(Rd) and

(4.3) lim
n→∞

‖Rn
µf‖

1/n

L2
k(Rd)

<
1

σ̃µ
,

for some non-real µ with Reµ = −‖ξ0‖2.
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iii) For f ∈ L2
k(Rd) let g = FD(f), then g vanishes in a neighborhood

of 0 if and only if f ∈ L2
k(Rd) and relation (4.3) holds for some non real

µ with Reµ > 0.

Proof. i) Necessity : Let g = FD(f) ∈ L2
k(Rd) vanish a.e. in a neigh-

borhood of ξ0. Then σ−‖ξ0‖2 > 0 and
FD(f)(ξ)

(‖ξ‖2 − ‖ξ0‖2)n
belongs to L2

k(Rd)

for any n = 0, 1, ... .
Applying the representation for the resolvent function in L2

k(Rd) n times
we obtain

(4.4) Rn
−‖ξ0‖2f = F−1D (

FD(f)(ξ)

(‖ξ‖2 − ‖ξ0‖2)n
).

So the Dunkl-Plancherel theorem yields

Rn
−‖ξ0‖2f ∈ L

2
k(Rd) for any n = 0, 1, ...

and

(4.5) ‖Rn
−‖ξ0‖2f‖

2
L2
k(Rd)

=

∫
Rd

|FD(f)(ξ)|2

(‖ξ0‖2 − ‖ξ‖2)2n
ωk(ξ)dξ.

Thus

(4.6) lim
n→∞

‖Rn
−‖ξ0‖2f‖

1/n

L2
k(Rd)

= lim
n→∞

‖ FD(f)(ξ)

(‖ξ0‖2 − ‖ξ‖2)n
‖1/n
L2
k(Rd)

.

Therefore, from Lemma 4.1 one can see that

lim
n→∞

‖Rn
−‖ξ0‖2f‖

1/n

L2
k(Rd)

=
1

σ−‖ξ0‖2
<∞.

Sufficiency: Let Rn
−‖ξ0‖2f be in L2

k(Rd) for any n = 0, 1, ..., and formula

(4.2) holds. Then each Rn
−‖ξ0‖2f is the Dunkl inverse transformation of

some gn in L2
k(Rd).

Since

(−4k − ‖ξ0‖2)nRn
−‖ξ0‖2f = f,

we have

FD(f)(ξ) = (‖ξ‖2 − ‖ξ0‖2)n gn(ξ).
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Hence
FD(f)(ξ)

(‖ξ0‖2 − ‖ξ‖2)n
belongs to L2

k(Rd), and formula (4.5) holds.

Therefore
1

σ−‖ξ0‖2
= lim

n→∞

∥∥∥ FD(f)(ξ)

(‖ξ0‖2 − ‖ξ‖2)n
∥∥∥1/n
L2
k(Rd)

= lim
n→∞

‖Rn
−‖ξ0‖2f‖

1/n

L2
k(Rd)

<∞.

Thus σ−‖ξ0‖2 > 0, and FD(f) vanishes a.e. in a neighborhood of ξ0.
ii) Let g = FD(f) be in L2

k(Rd) vanish a.e. in a neighborhood of

ξ0, and Reµ = −‖ξ0‖2. Then σµ > σ̃µ and
FD(f)(ξ)

(‖ξ0‖2 − ‖ξ‖2)n
belongs to

L2
k(Rd) for any n = 0, 1, .... Hence, Rn

−‖ξ0‖2f belongs to L2
k(Rd) for any

n = 0, 1, ... and formula (4.3) holds. This, together with Lemma 4.1,
gives formula (4.3). Conversely, let (4.3) hold. Then Lemma 4.1 and
formulas (4.3), (4.6) yield that σµ > σ̃µ. Thus FD(f) vanishes in some
neighborhood of ξ0 with Reµ = −‖ξ0‖2.

iii) Let g = FD(f) be in L2
k(Rd) vanish a.e. in a neighborhood of 0.

Then for Reµ > 0, σµ > σ̃µ and
FD(f)(ξ)

µ+ ‖ξ‖2n
∈ L2

k(Rd) for any n = 0, 1, ....

Hence, Rn
µf belongs to L2

k(Rd) for any n = 0, 1, ... and formula (4.6)
holds. This, together with Lemma 4.1, gives the result. Conversely, let
(4.3) hold. Then Lemma 4.1 and formulas (4.3), (4.6) yield that σµ > σ̃µ.
Thus FD(f) vanishes in some neighborhood of 0.

5. Characterization for the support of the Dunkl transform
on Lpk(R) via the Dunkl potentials

In this section, we extend the definition of the Dunkl potentials on
the space of tempered distributions as follows:

Definition 5.1. Let f ∈ S ′(Rd). The tempered generalized function
R0f is termed the Dunkl potential of f if −4k(R0f) = f , that is

〈R0f,4kϕ〉 = −〈f, ϕ〉, for all ϕ ∈ S(Rd).

Theorem 5.1. We assume that d = 1 and W = Z2. Let 1 ≤ p ≤ ∞.
If Rn

0f ∈ L
p
k(R) for all n ∈ N0, then

(5.1) lim
n→∞

||Rn
0f ||

1
n

Lpk(R)
=

1

σ2
0

,
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where

σ0 = inf
{
|ξ| : ξ ∈ suppFD(f)

}
.

To prove this theorem we need the following lemmas.

Lemma 5.2. If σ0 > 0, then

(5.2) suppFD
(
Rn

0f
)

= suppFD(f), n = 1, ....

Proof. As

(−4k)
n(Rn

0f) = f

we deduce that

FD(f) = ξ2nFD
(
Rn

0f
)
.

Therefore,

suppFD(f) ⊂ suppFD
(
Rn

0f
)
⊂ FD(f) ∪

{
0
}
.

So, to obtain (5.2), it is enough to show that 0 /∈ suppFD
(
Rn

0f
)

.

We choose numbers a, b : 0 < a < b < σ0 and a function h ∈ D(R) such
that
supp h ⊂ (−b, b) and h(x) ≡ 1 in (−a, a). Then

supp
(
hFD(Rn

0f)
)
⊂
{

0
}
.

Suppose that supp
(
hFD(Rn

0f)
)

=
{

0
}
, then there is a number N(n) ∈

N such that

hFD
(
Rn

0f
)

=

N(n)∑
j=0

Cj(N(n))4j
kδ.

Hence,

F−1D (h) ∗D Rn
0f =

N(n)∑
j=0

Cj(N(n))(−ξ2)j.

As Rn
0f ∈ L

p
k(R) and F−1D (h) ∈ Lqk(R), we get F−1D (h) ∗D Rn

0f ∈ L∞k (R).
Therefore

F−1D (h) ∗D Rn
0f = C0(N(n)), n ∈ N.
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Note that

C0(N(n)) = F−1D (h) ∗D Rn
0f(x)

= F−1D (h) ∗D
(
−4k

)
Rn+1

0 f(x)

=
(
−4k

)(
F−1D (h) ∗D Rn+1

0 f(x)
)

=
(
−4k

)
(C0(N(n+ 1))) = 0.

Thus we deduce that C0(N(n)) = 0. So hFD
(
Rn

0f
)

= 0.

Assume now the contrary that{
0
}
⊂ supp FD

(
Rn

0f
)
.

Then there is a function χ ∈ D(R), with supp χ ⊂ (−a, a) and such that

〈FD
(
Rn

0f
)
, χ〉 6= 0.

So, as h(x) = 1 for |x| < a, we get

0 6= 〈FD
(
Rn

0f
)
, χ〉 = 〈FD

(
Rn

0f
)
, hχ〉 = 〈hFD

(
Rn

0f
)
, χ〉 = 0,

which is impossible. Thus we have proved (5.2).

Lemma 5.3. If σ0 > 0, then

(5.3) lim sup
n→∞

||Rn
0f ||

1
n

Lpk(R)
≤ 1

σ2
0

.

Proof. From (5.2) we have

(5.4) suppFD
(
Rn

0f
)
⊂ R\(−σ0, σ0).

For any ε > 0, ε < σ0
2

we choose a function h ∈ E(R) satisfying

h(ξ) =

{
1 if |ξ| ≥ σ0 − ε
0 if |ξ| < σ0 − 2ε.

Let χ be an arbitrary element in S(R). Then it follows from (5.4) that

〈Rn
0f, χ〉 = 〈FD

(
Rn

0f
)
,F−1D (χ)〉

= 〈FD
(
Rn

0f
)
, hF−1D (χ)〉

= 〈Rn
0f,FD

(
hF−1D (χ)

)
〉.
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Therefore,

(5.5) 〈Rn
0f, χ〉 = 〈Rn

0f, ϕ〉,
where

ϕ = FD
(
hF−1D (χ)

)
.

We put

ϕn = FD
(h(ξ)

ξ2n
F−1D (χ)

)
.

Then ϕn ∈ S(R) and

(5.6)
|〈f, ϕn〉| = |〈(−4k)

nRn
0f, ϕn〉|

= |〈Rn
0f, (−4k)

nϕn〉|
= |〈Rn

0f, ϕ〉|.
Combining (5.5) and (5.6), we get

(5.7) |〈Rn
0f, χ〉| = |〈f, ϕn〉| = |〈f, χ ∗D FD(

h(ξ)

ξ2n
)〉|.

Therefore, we have

||Rn
0f ||Lpk(R) = sup{

χ∈S(R): ||χ||
L
q
k
(R)≤1

} ∣∣∣〈f, χ ∗D FD(
h(ξ)

ξ2n
)〉
∣∣∣

≤ sup{
χ∈S(R): ||χ||

L
q
k
(R)≤1

} ||f ||Lpk(R)||χ ∗D FD(
h(ξ)

ξ2n
)||Lqk(R)

≤ C||f ||Lpk(R)||FD(h(ξ)
ξ2n

)||L1
k(R).

Hence

(5.8) lim sup
n→∞

||Rn
0f ||

1
n

Lpk(R)
≤ lim sup

n→∞
||FD(

h(ξ)

ξ2n
)||

1
n

L1
k(R)

.

By a simple calculation we prove that

(5.9) lim sup
n→∞

||FD(
h(ξ)

ξ2n
)||

1
n

L1
k(R)
≤ 1

(σ0 − 2ε)2
.

Combining (5.8) and (5.9), we get

lim sup
n→∞

||Rn
0f ||

1
n

Lpk(R)
≤ 1

(σ0 − 2ε)2

and then (5.3) by letting ε→ 0.
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Lemma 5.4. If σ0 > 0, then

(5.10) lim inf
n→∞

||Rn
0f ||

1
n

Lpk(R)
≥ 1

σ2
0

.

Proof. From the definition of σ0, there exists a function χ ∈ D(R)
such that

suppχ ⊂
{
ξ : σ0 − ε < |ξ| < σ0 + ε

}
and 〈FD(f), χ〉 6= 0.

Therefore,

0 6= |〈f, χ〉| = |〈(−4k)
nRn

0f, χ〉|
= |〈Rn

0f, (−4k)
nχ〉|

≤ ||Rn
0f ||Lpk(R)||(−4k)

nχ||Lqk(R).(5.11)

So

(5.12) lim inf
n→∞

||Rn
0f ||

1
n

Lpk(R)
≥ 1

lim sup
n→∞

||(−4k)
nχ||Lqk(R)

.

We proceed as above to prove

lim sup
n→∞

||(−4k)
nχ||

1
n

Lqk(R)
≤ (σ0 + ε)2.

So by (5.12) we obtain

lim inf
n→∞

||Rn
0f ||

1
n

Lpk(R)
≥ 1

(σ + ε)2
, ε > 0,

and then (5.10).

Proof. of Theorem 5.1.
We divide our proof into two cases.

Case 1. σ0 = 0. We have ξ0 ∈ suppFD(f). Hence, for any ε > 0 there
is a function χ ∈ D(R) such that supp χ ⊂ (−ε, ε) and 〈FD(f), χ〉 6= 0.
Arguing as above we obtain

lim inf
n→∞

||Rn
0f ||

1
n

Lpk(R)
≥ 1

lim sup
n→∞

||(−4k)
n(χ)||

1
n

Lqk(R)

≥ 1

ε2
.

Therefore

lim inf
n→∞

||Rn
0f ||

1
n

Lpk(R)
=∞.
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So we always have

lim
n→∞

||Rn
0f ||

1
n

Lpk(R)
=

1

σ2
0

.

Case 2. σ0 > 0. Combining (5.3) and (5.10), we arrive to (5.1).

We proceed as above theorem, we characterize the support of the Dunkl
transform on Lpk(Rd) via the Dunkl potentials by the following result.

Theorem 5.5. Let 1 ≤ p ≤ ∞ and Rn
0f ∈ L

p
k(Rd) for all n ∈ N0. If

0 /∈ suppFD
(
Rn

0f
)

, then

(5.13) lim
n→∞

||Rn
0f ||

1
n

Lpk(Rd)
=

1

σ2
0

,

where

σ0 = inf
{
||ξ|| : ξ ∈ suppFD(f)

}
.

6. Real Paley-Wiener theorems for the Dunkl transform on
S ′(Rd)

We start this section by stating the following result.

Theorem 6.1. Let P be a non-constant polynomial with complex
coefficients on Rd. Let u ∈ E(Rd) ∩ S ′(Rd), and suppose the set

Vr :=
{
ξ ∈ Rd : |P (ξ)| ≤ r

}
is compact for a constant r ≥ 0. Then the support of FD(u) is contained
in Vr, if and only if, for eachR > r, there existNR and a positive constant
C(R) such that

(6.1) |P n(−iT )(u)(x)| ≤ C(R)Rn(1 + ||x||)NR ,

for all n ∈ N and x ∈ Rd.

Proof. Assume that the support of FD(u) is contained in the compact
Vr. Let R > r and let ε ∈ (0, R − r). We choose χ ∈ D(Rd) such that
χ ≡ 1 on an open neighborhood of support of FD(u), and χ ≡ 0 outside
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VR− ε
3
. As FD(u) is of order N , there exists a positive constant C such

that for all x ∈ Rd

|P n(−iT )(u)(x)| =
∣∣∣(FD)−1

(
P n(ξ)FD(u)

)
(x)
∣∣∣

=
∣∣∣(FD)−1

(
χ(ξ)P n(ξ)FD(u)

)
(x)
∣∣∣

= |〈χ(ξ)P n(ξ)FD(u)(ξ), K(iξ, x)〉|
= |〈FD(u)(ξ), χ(ξ)P n(ξ)K(iξ, x)〉|
≤ C supξ∈Rd

∑
0≤|l|≤N

∣∣∣Dl
(
χ(ξ)P n(ξ)K(iξ, x)

)∣∣∣.
Thus from the Leibniz formula (2.9) we obtain that

∀n ∈ N0, |P n(−iT )(u)(x)| ≤ C1(R)nN(R− ε

3
)n(1 + ||x||)N

≤ C2(R)Rn(1 + ||x||)N .

Conversely we assume that we have (6.1).
Suppose ξ0 ∈ Rd is fixed and such that |P (ξ0)| ≥ R+ ε, for some ε > 0.

Choose and fix χ ∈ D(Rd) such that suppχ ⊂
{
ξ ∈ Rd : |P (ξ)| ≥ R+ ε

3

}
,

and put χn = P−n(ξ)χ. We have

〈FD(u), χ〉 = 〈FD(u), P n(ξ)χn〉 = 〈P n(ξ)FD(u), χn〉
= 〈FD(P n(−iT )u), χn〉
= 〈

(
(1 + ||x||)−NP n(−iT )u

)
, (1 + ||x||)N(FD)−1(χn)〉.

Hence, from the Hölder inequality we obtain

|〈FD(u), χ〉|
≤ C||(1 + ||x||)−N+d+1P n(−iT )u||L∞k (Rd)||(1 + ||x||)N(FD)−1(χn)||L2

k(Rd).

We proceed as in Theorem 4 [16], to prove that

||(1 + ||x||)N(FD)−1(χn)||L2
k(Rd) ≤ CnM(|P (ξ0)|+

ε

3
)−n ≤ CnM(R +

ε

3
)−n.

Thus

|〈FD(u), χ〉| ≤ C(R)nM+N
( R

R + ε
3

)n
.

Thus we deduce 〈FD(u), χ〉 = 0, which implies that ξ0 /∈ supp FD(u).
Thus the support of FD(u) is contained in the compact Vr.
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Corollary 6.2. Let P be a non-constant polynomial with complex
coefficients on Rd. Let u ∈ E(Rd) ∩ S ′(Rd) such that suppFD(u) is
compact. Then

sup
y∈suppFD(f)

|P (y)| = Ru,

where Ru is defined as the infimum of all R ≥ 0 for which there exist N
and C(N,R) ≥ 0, such that for all n ∈ N and x ∈ Rd

|P n(−iT )(u)(x)| ≤ C(R,N)nNRn(1 + ||x||)N .

Notations. We denote by

Br :=
{
ξ ∈ Rd : |P (ξ)| < r

}
, Sr :=

{
ξ ∈ Rd : |P (ξ)| = r

}
.

Theorem 6.3. Let u = u0 ∈ E(Rd)∩S ′(Rd), and consider the infinite
series {u−n}n∈N of generalized tempered distributions defined as u−n+1 =
P (−iT )un, for a polynomial P and for all n ∈ N. Let r > 0. Assume,
for all R ∈ (0, r) there exist constants N ∈ N0 and C > 0, such that

∀ x ∈ Rd, |u−n(x)| ≤ CR−n(1 + ||x||)N ,(6.2)

for all n ∈ N. Then suppFD(u) ∩ Br = ∅. On the other hand, if
suppFD(u)∩Br = ∅ and suppFD(u) is compact, then (6.2) holds, for all
R ∈ (0, r).

Proof. Assume that suppFD(u)∩Br = ∅ and suppFD(u) is compact.
Let R ∈ (0, r) and let ε ∈ (0, r−R). Choose χ ∈ D(Rd) such that χ ≡ 1
on an open neighborhood of the support of FD(u), and χ ≡ 0 outside
VR+ ε

3
. As u = P n(−iT )u−n, we have

|u−n(x)| = =
∣∣∣F−1D (P−n(ξ)FD(u)

)
(x)
∣∣∣

=
∣∣∣F−1D (χ(ξ)P−n(ξ)FD(u)

)
(x)
∣∣∣

= |〈χ(ξ)P−n(ξ)FD(u)(ξ), K(iξ, x)〉|
= |〈FD(u)(ξ), χ(ξ)P−n(ξ)K(iξ, x)〉|
≤ C supξ∈Rd

∑
0≤|j|≤N

∣∣∣Dj
(
χ(ξ)P−n(ξ)K(iξ, x)

)∣∣∣.
Thus from Leibniz formula (2.9) we obtain

∀n ∈ N0, |u−n(x)| ≤ C1(R)nN(R+
ε

3
)−n(1+||x||)N ≤ C2(R)R−n(1+||x||)N .
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Assume that we have (6.2). For a fixed R ∈ (0, r), let ε > 0. Choose

and fix χ ∈ D(Rd) such that suppχ ⊂
{
ξ ∈ Rd : |P (ξ)| ≥ R − ε

3

}
, and

put χn = P n(ξ)χ. We have

〈FD(u), χ〉 = 〈FD(u), P−n(ξ)χn〉 = 〈P−n(ξ)FD(u), χn〉
= 〈FD(u−n), χn〉
= 〈

(
(1 + ||x||)−Nu−n

)
, (1 + ||x||)NF−1D (χn)〉.

Hence, from the Hölder inequality we obtain

|〈FD(u), χ〉| ≤ ||(1 + ||x||)−Nu−n||L∞k (Rd)||(1 + ||x||)NF−1D (χn)||L1
k(Rd).

We proceed as in Theorem 4 [16] to prove

||(1 + ||x||)NF−1D (χn)||L1
k(Rd) ≤ CnM(|P (ξ0)|+

ε

3
)−n ≤ CnM(R +

ε

3
)−n.

Thus

|〈FD(u), χ〉| ≤ C(R)nM+N
( R

R + ε
3

)n
.

Thus we deduce 〈FD(u), χ〉 = 0, which implies that suppFD(u) ∩ Br =
∅.

Putting Theorem 6.1 and Theorem 6.3 together, we get the following.

Corollary 6.4. Let u = u0 ∈ E(Rd) ∩ S ′(Rd), and consider the
infinite series {un}n∈Z of generalized tempered distributions defined as
un+1 = P (−iT )un, for a polynomial P and for all n ∈ Z. Let R > 0.
Then suppFD(u) is contained in SR, if and only if for all ε > 0, there
exist constants N ∈ N0 and C > 0, such that

∀x ∈ R, |un(x)| ≤ CRn(1 + ε)|n|(1 + ||x||)N(6.3)

for all n ∈ Z.

Remark 6.1. Theorem 6.3 and Corollary 6.4 are the analogue of the
new real Paley-Wiener theorems for the Fourier transform, proved by
Andersen (see [2]).

7. Roe’s Theorem associated with the Dunkl operators

In [19] Roe proved that if a doubly-infinite sequence (fj)j∈Z of
functions on R satisfies
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dfj
dx

= fj+1 and |fj(x)| ≤ M for all j = 0,±1,±2, ... and x ∈ R,
then f0(x) = a sin(x + b) where a and b are real constants. This result
was extended to Rd by Strichartz [21] where d

dx
is substituted by the

Laplacian on Rd as follows.

Theorem. (Strichartz). Let (fj)j∈Z be a doubly infinite sequence of
measurable functions on Rd such that for all j ∈ Z, (i) ||fj||L∞(Rd) ≤ C
for some constant C > 0 and (ii) for some a > 0,4fj = afj+1. Then
4f0 = −af0.

The purpose of this section is to generalize this theorem in the context
of Dunkl setting. We now state our main result.

Theorem 7.1. Suppose P (ξ) =
∑
n

anξ
n is real-valued and let {fj}∞−∞

be a sequence of complex-valued functions on R such that

fj+1 = P (−iT )fj.

(i) Let a ≥ 0, R > 0, and assume that {fj}∞−∞ satisfies

(7.1) |fj(x)| ≤MjR
j(1 + ||x||)a,

where (Mj)j∈Z satisfies the sublinear growth condition

(7.2) lim
j→∞

M|j|
j

= 0.

Then f = f+ + f− where P (−iT )f+ = Rf+ and P (−iT )f− = −Rf−. If
R (or −R) is not in the range of P then f+ = 0 (or f− = 0).

(ii) If we replace (7.2) by

(7.3) lim
j→∞

M|j|
(1 + ε)|j|

= 0,

for all j > 0, then the span of (fj)j is finite dimensional. Moreover,
f0 = f+ + f−, where, for some integer N , (P (−iT ) − R)Nf+ = 0 and
(P (−iT ) + R)Nf− = 0. Thus f+ (or f− ) is a generalized eigenfunction
of P (−iT ) with eigenvalue R (or −R).

We break the proof up into three steps. In the first step we consider
the Dunkl transform FD(f0) of f0, which exists as a distribution.

Lemma 7.2. Let a ≥ 0. If (fj)j∈Z is a sequence of functions on Rd

satisfying

(7.4) P (−iT )fj = fj+1,
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(7.5) ∀x ∈ Rd, |fj(x)| ≤MjR
j(1 + ||x||)a,

and

(7.6) lim
j→∞

M|j|
(1 + ε)|j|

= 0,

for all ε > 0, then

support(FD(f0)) ⊂ SR :=
{
ξ : |P (ξ)| = R

}
.

Proof. First we show that FD(f0) is supported in
{
ξ : |P (ξ)| ≤ R

}
.

To do this we need to show that 〈FD(f0), φ〉 = 0 if φ ∈ D(Rd) and

support(φ)∩
{
ξ : |P (ξ)| ≤ R

}
= ∅. Since support(φ) is compact, there

is some r < R so that 1
|P (ξ)| ≤ r, for all ξ ∈ support(φ). Then

〈FD(f0), φ〉 = 〈P jFD(f0),
φ
P j
〉

= 〈(FD)
(
P (−iT )jf0

)
, φ
P j
〉

= 〈P (−iT )jf0, (FD)−1( φ
P j

)〉.
Choose an integer m with 2m ≥ 2a + 2γ + d + 1. A calculation, using
the hypothesis of Lemma 7.2 and Cauchy-Schwartz inequality, implies

|〈FD(f0), φ〉| ≤
∫
Rd
|P (−iT )jf0(x)||(FD)−1(

φ

P j
)(x)|ωk(x)dx

≤ CMj sup
x∈Rd
|(1 + ||x||2)m+1(FD)−1(

φ

P j
)(x)]|.

Using the continuity of (FD)−1 and the fact that φ is supported in
{
ξ :

|P (ξ)| ≥ R + ε
}

for some fixed ε > 0, it is not hard to prove that the

right-hand side of this goes to zero as j → ∞ and so 〈FD(f0), φ〉 = 0.
To complete the proof we need to show that FD(f0) is also supported in{
ξ : |P (ξ)| ≥ R

}
, which means that 〈FD(f0), φ〉 = 0 if φ is supported

in
{
ξ : |P (ξ)| ≤ R

}
. Here we use (7.4) to obtain

〈FD(f0), φ〉 = 〈FD(f−j), P
jφ〉

and the argument proceeds as before.

The next step in the proof we assume firstly that −R is not a value of
P (ξ), and we show that Lkf0 = Rf0.
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Lemma 7.3. There exists an integer N such that

(7.7) (P (ξ)−R)N+1FD(f0) = 0.

Proof. Using Lemma 7.2 and proceeding as in [13], we prove the result.

Proof. of Theorem 7.1
We want to prove (i). Indeed, inverting the Dunkl transform in (7.7)

yields that

(7.8) (P (−iT )−R)N+1f0 = 0.

This equation implies

span
{
f0, f1, f2, ...

}
= span

{
f0, P (−iT )f0, P (−iT )2f0, ...

}
= span

{
f0, P (−iT )f0, ..., P

N(−iT )f0

}
.

We shall now show that we can take N = 0 in (7.8). If not then
(P (−iT ) − R)f0 6= 0. Let p be the largest positive integer so that
(P (−iT )−R)pf0 6= 0. Clearly p ≤ N. Thus

f := (P (−iT )−R)p−1f0 ∈ span
{
f0, f1, ..., fN

}
will satisfy

(7.9) (P (−iT )−R)2f = 0 and (P (−iT )−R)f 6= 0.

Write
f = a0f0 + ...+ aNfN ,

for constants a0, ..., aN . Then

P j(−iT )f = a0fj + ...+ aNfN+j.

If
Cj = |a0|R0Mj + ...+ |aN |RNMj+N ,

then this and (7.1) imply

(7.10) |P j(−iT )f(x)| ≤ CjR
j(1 + ||x||)a.

By (7.2) these satisfy the sublinear growth condition

(7.11) lim
j→∞

Cj
j

= 0.

An induction using (7.9) implies for j ≥ 2 that

P j(−iT )f = Rj−1jP (−iT )f−Rj(j−1)f = Rj−1j(P (−iT )−R)f+Rjf.
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Thus

|(P (−iT )−R)f(x)| ≤ 1

jRj−1 |P
j(−iT )f(x)|+ R|f(x)|

j

≤ CjR

j
(1 + ||x||)a +

R|f(x)|
j

.

Letting j → ∞ and using (7.11) implies (P (−iT ) − R)f = 0. But this
contradicts (7.9). Consequently, N = 0 in (7.8). This completes the
proof in the case that −R is not in the range of P .

In the case that R is not in the range of P we apply the same argu-
ment to −P (−iT ) to conclude P (−iT )f0 = −Rf0.
In the general case, let L = P 2(−iT ). Then FD(Lf)(ξ) = P 2(ξ)FD(f)(ξ).
Lf2p = f2(p+1) and P 2(ξ) 6= −R. Thus we can (as before) conclude, for
the sequence (f2p)p∈Z that

Lf0 = P 2(−iT )f0 = R2f0.

Set

f+ =
1

2
(f0 +

1

R
P (−iT )f0) and f− =

1

2
(f0 −

1

R
P (−iT )f0).

Then

f = f+ + f−, P (−iT )f+ = Rf+, and P (−iT )f− = −Rf−.
This completes the proof of (i).

Now we want to prove (ii). Indeed the proof will be based on the
following result from linear algebra. (cf. [5], Chapter 10.)

Lemma 7.4. Let X be a finite dimensional complex vector space,
and let T : X → X be a linear map with eigenvalues λ1, ..., λp. Then
X = X1 ⊕ ...⊕Xp, where Xj = ker((T − λj)N) and dimX = N .

We first prove (ii) under the assumption that P (ξ) 6= −R. Using the
growth condition (7.3) and Lemma 7.4, we may still conclude that

support(FD(f0)) ⊂ SR :=
{
ξ : P (ξ) = R

}
.

But then, as before, we can conclude that (7.8) holds. But this is enough
to complete the proof in this case. A similar argument shows that if
P (ξ) 6= R, then (P (−iT ) +R)Nf0 = 0.
In the general case we again let L = P 2(−iT ) and P0 = P 2. Then
P0(ξ) 6= −R and the span of (f2j)j is finite dimensional. The map
P (−iT ) takes the span of (f2j)j onto the span of (f2j+1)j. Thus X is
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finite dimensional. Any f ∈ X will have support(f) inside the set defined
by P (ξ) = ±R. From this it is not hard to show that the only possible
eigenvalues of P (−iT ) restricted to X are R and −R. The result now
follows from the last lemma.

Remark 7.1. (i) If we take P (y) = −||y||2, then Lk = 4k and The-
orem 7.1 gives 4kf0 = −Rf0. This characterizes eigenfunctions f of
generalized Laplace operator 4k with polynomial growth in terms of
the size of the powers 4j

kf , −∞ < j <∞.
(ii) We note that the results presented in this section, inspired by [13],

generalizes and improves the version presented in [15]. This version was
established, for R = 1.

In the rest of this section we state another version of the Roe’s theorem
associated to the Dunkl operator on the real line. This version is proved
in the context of the Dunkl-type operator, which is more general that
the Dunkl operator in real line. (See [17]).

For the sake of simplification, we denote the Dunkl operator on the
real line by Λ. This operator is defined by

Λf(x) = f ′(x) +
2k

x
(f(x)− f(−x)).

Theorem 7.5. Suppose P (ξ) =
∑
n

anξ
n is a non-constant polyno-

mial with complex coefficients. Let {fj}∞−∞ be a sequence of complex-
valued functions on R such that

∀ j ∈ Z, fj+1 = P (Λ)fj.

1) Let a ≥ 0 and let R > 0. Assume that for all ε > 0, there exist
constants N ∈ N0 and C > 0, so that

∀x ∈ R, |fn(x)| ≤ CRn(1 + ε)|n|(1 + |x|)N(7.12)

is satisfied for all n ∈ Z. Then

(7.13) f0 =
∑
λ∈SR

N∑
j=0

c(λ, j)
dj

dξj |ξ=λ
K(iξ, .),

for constants c(λ, j) ∈ C and N ∈ N.
2) Let a ≥ 0 and let R > 0 and assume that {fj}∞−∞ satisfies

(7.14) |fj(x)| ≤MjR
j(1 + |x|)a,
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where (Mj)j∈Z satisfies the subpotential growth condition

(7.15) lim
j→∞

M|j|
jm

= 0,

for some m ≥ 0.
We have
(i) If P ′(λp) 6= 0, for all λp ∈ SR, then N < m in (7.13).
In particular, if m = 1, then

f0 =
∑
λp∈SR

fλp , where fλp = c(λp)K(iλp, .)

.
(ii) If SR consists of one point λ0 and m = 1 in (7.15), then P (Λ)f0 =

P (λ0)f0.

Remark 7.2. The previous theorem is the analogue for Theorems 1
and 6 of [2].
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