DOI QR코드

DOI QR Code

MASS FORMULA OF SELF-DUAL CODES OVER GALOIS RINGS GR(p2, 2)

  • Received : 2016.09.19
  • Accepted : 2016.12.26
  • Published : 2016.12.30

Abstract

We investigate the self-dual codes over Galois rings and determine the mass formula for self-dual codes over Galois rings $GR(p^2,2)$.

Keywords

References

  1. Jose Maria P. Balmaceda, Rowena Alma L. Betty, and Fidel R. Nemenzo, Mass formula for self-dual codes over ${\mathbb{Z}}_{p2}$, Discrete Mathematics 308 (14) (2008), 2984-3002. https://doi.org/10.1016/j.disc.2007.08.024
  2. A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptography, 6 (1) (1995), 21-35. https://doi.org/10.1007/BF01390768
  3. Whan-Hyuk Choi, Kwang Ho Kim, and Sook Young Park, The classification of self-orthogonal codes over ${\mathbb{Z}}_{p2}$ of length ${\leq}3$, Korean Journal of Mathematics 22 (4) (2014), 725-742. https://doi.org/10.11568/kjm.2014.22.4.725
  4. Philippe Gaborit, Mass formulas for self-dual codes over ${\mathbb{Z}}_4$ and ${\mathbb{F}}q +u{\mathbb{F}}_q$ rings, Information Theory IEEE Transactions on 42 (4) (1996) 1222-1228. https://doi.org/10.1109/18.508845
  5. Fernando Q. Gouvea, p-adic Numbers, Springer, 1997.
  6. Roger A. Hammons, Vijay P. Kumar, A. Robert Calderbank, N. Sloane, and Patrick Sole, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, Information Theory IEEE Transactions on 40 (2) (1994), 301-319. https://doi.org/10.1109/18.312154
  7. Jon-Lark Kim and Yoonjin Lee, Construction of MDS self-dual codes over Galois rings, Designs, Codes and Cryptography, 45 (2) (2007), 247-258. https://doi.org/10.1007/s10623-007-9117-y
  8. Rudolf Lidl and Harald Niederreiter, Finite fields: Encyclopedia of mathematics and its applications, Computers & Mathematics with Applications 33 (7) (1997), 136-136.
  9. Bernard R. McDonald, Finite rings with identity, volume 28. Marcel Dekker Incorporated, 1974.
  10. Kiyoshi Nagata, Fidel Nemenzo, and Hideo Wada, Constructive algorithm of self-dual error-correcting codes In Proc. of 11th International Workshop on Algebraic and Combinatorial Coding Theory, pages 215-220, 2008.
  11. Kiyoshi Nagata, Fidel Nemenzo, and Hideo Wada, The number of self-dual codes over ${\mathbb{Z}}_{p3}$, Designs, Codes and Cryptography 50 (3) (2009), 291-303. https://doi.org/10.1007/s10623-008-9232-4
  12. Kiyoshi Nagata, Fidel Nemenzo, and Hideo Wada, Mass formula and structure of self-dual codes over ${\mathbb{Z}}_{2s}$, Designs, codes and cryptography 67 (3) (2013), 293-316. https://doi.org/10.1007/s10623-011-9606-x
  13. Young Ho Park, The classification of self-dual modular codes, Finite Fields and Their Applications 17 (5) (2011), 442-460. https://doi.org/10.1016/j.ffa.2011.02.010
  14. Vera Pless, The number of isotropic subspaces in a finite geometry Atti. Accad. Naz. Lincei Rendic 39 (1965), 418-421.
  15. Vera Pless, On the uniqueness of the golay codes, Journal of Combinatorial theory 5 (3) (1968), 215-228. https://doi.org/10.1016/S0021-9800(68)80067-5
  16. Zhe-Xian Wan, Finite Fields And Galois Rings, World Scientific Publishing Co., Inc., 2011.

Cited by

  1. THE CLASSIFICATION OF SELF-DUAL CODES OVER GALOIS RINGS OF LENGTH 4 vol.55, pp.5, 2016, https://doi.org/10.4134/bkms.b170791