DOI QR코드

DOI QR Code

열음향 공진 점화에 대한 연구

Research about Thermoacoustic Resonance Ignition

  • Seo, Seonghyeon (Department of Mechanical Engineering, Hanbat National University) ;
  • Kang, Sang Hun (Department of Aerospace System Engineering, Sejong University) ;
  • Bae, Jong Yeol (Department of Mechanical Engineering, Hanbat National University) ;
  • Lee, Jin Young (Department of Mechanical Engineering, Hanbat National University)
  • 투고 : 2015.12.03
  • 심사 : 2016.01.14
  • 발행 : 2016.02.01

초록

초음속 유동의 운동에너지가 열에너지로 바뀌는 열음향 공진 현상을 활용하여 액체로켓엔진의 다중 점화를 위한 점화기 구현에 적용할 수 있다. 본 논문은 이와 같은 열음향 공진 현상의 기본 원리와 이론, 현재까지 진행된 주요 연구결과를 본문에 수록하였다. 열음향 공진 현상에 의한 열발생 특성은 초음속 노즐을 통해 분출되는 유동의 특성과 노즐과 공진관의 형상 그리고 에너지를 전달하는 기체의 종류에 의해 영향 받는다. 이와 같은 열음향 공진 현상을 적용한 액체로켓엔진을 위한 다중 점화기를 구성하는데 있어서 향후 연구 개발이 필요한 부분에 대한 논의를 진행하였다.

The unique phenomenon that jet flow kinetic energy is converted to thermal energy through thermoacoustic resonance can be applied for the multiple ignition of liquid rocket engines. The present article includes the basic principle and theory behind the phenomenon as well as major outstanding, previous research works. The thermoacoustic phenomenon is affected by underexpanded jet flow characteristics from a nozzle, geometries of a nozzle and a resonance tube, and chemical composition of jet flow. The paper concludes with discussion what should be considered as crucial issues for the future research on the development of a multiple ignition system of liquid rocket engines.

키워드

참고문헌

  1. Welland, W.H.M., Brauers, B.M.J. and Vermeulen, E.J., "Future Igniter Technologies," In Space Propulsion Conference, Bordeaux, France, pp. 7-10, May 2010.
  2. Phillips, B., Pavli, A.J. and Conrad, E.W., "A Resonance Igniter for Hydrogen/Oxygen Combustors," Journal of Spacecraft and Rockets, Vol. 7, No. 5, pp. 620-622, 1970. https://doi.org/10.2514/3.30007
  3. Marchese, V.P., Rakowsky, E.L. and Bement, L.J., "A Fluid Sounding Rocket Motor Ignition System," Journal of Spacecraft and Rockets, Vol. 10, No. 11, pp. 731-734, 1973. https://doi.org/10.2514/3.61955
  4. Hartmann, J., "On a New Method for the Generation of Sound Waves," Physical Review, Vol. 20, Issue 6, pp. 719-727, 1922. https://doi.org/10.1103/PhysRev.20.719
  5. Sprenger, H.S., "Uber Termische Effecte bei Rezonanzrohren," Mitteilungs aus dem Institut fur Aerodynamik, No. 21, pp. 18-35, 1954.
  6. Avduevskii, V.S., Ivanov, A.V., Karpman, I.M., Traskovskii, V.D. and Yudelovich, M.Ya., "Flow in Supersonic Viscous Under Expanded Jet," Fluid Dynamics, Vol. 5, No. 3, pp. 409-414, 1970. https://doi.org/10.1007/BF01019275
  7. Abramovich, G.N., Applied Gas Dynamics, Nauka, Moscow, Russia, Part 1, 1991.
  8. Kessaev, K., Vidal, R. and Niwa, M., "Gas Jet Heat Release Inside a Cylindrical Cavity," International Journal of Heat and Mass Transfer, Vol. 46, No. 10, pp. 1873-1878, 2003. https://doi.org/10.1016/S0017-9310(02)00438-6
  9. Aref'ev, K.Y., Voronetskii, A.V. and Il'chenko, M.A., "Dynamic Characteristics of a Resonant Gas-Dynamic System for Ignition of a Fuel Mixture," Combustion, Explosion and Shock Waves, Vol. 49, No. 6, pp. 657-661, 2013. https://doi.org/10.1134/S0010508213060038
  10. Sobieraj, G.B. and Szumowski, A.P., "Experimental Investigations of an Underexpanded Jet from a Convergent Nozzle Impinging on a Cavity," Journal of Sound and Vibration, Vol. 149, No. 3, pp. 375-396, 1991. https://doi.org/10.1016/0022-460X(91)90443-N
  11. Przirembel, C.E.G. and Fletchert, L.S., "Aerothermodynamics of a Simple Resonance Tube," AIAA Journal, Vol. 15, No. 1, pp. 101-104, 1977. https://doi.org/10.2514/3.60606
  12. Niwa, M., Santana Jr., A. and Kessaev, K., "Modular Ignition System based on Resonance Igniter," Journal of Propulsion and Power, Vol. 17, No. 5, pp. 1131-1134, 2001. https://doi.org/10.2514/2.5855
  13. Song, Y.N., Yu, N.J., Zhang, G.Z., Bin, M., Zhou, W.L. and Huang, X., "Investigation of Novel Hydrogen Oxygen Thruster for Orbital Maneuver in Space Station," Chinese Journal of Aeronautics, Vol. 18, No. 4, pp. 289-294, 2005. https://doi.org/10.1016/S1000-9361(11)60247-1
  14. Yu, N., Cai, G., Zhang, G. and Bin, M., "Experimental Research of Helium Resonance Heating Surface Igniter," 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, USA, AIAA 2007-5444, July 2007.
  15. Sarohia, V., Back, L.H., Roschke, E.J. and Pathasarathy, S.P., "An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes," NASA JPL, TM 33-780, 1976.
  16. Marchan, A.R., "Small-Scale Supersonic Combustion Chamber with a Gas-Dynamic Ignition System," Combustion Science and Technology, Vol. 183, Issue 11, pp. 1236-1265, 2011. https://doi.org/10.1080/00102202.2011.589874
  17. Bouch, D.J. and Cutler, A.D., "Investigation of A Hartmann-Sprenger Tube for Passive Heating of Scramjet Injectant Gases," 41st Aerospace Sciences Meeting and Exhibit, Reno, N.V., USA, AIAA-2003-1275, Jan. 2003.
  18. Butorin, E.A., Kravtsov, Ya.I., Fiseiskii, V.A., Zaretskii, Ya.V., Mokrousov, G.P. and Chugunov, V.B., "Experimental Study of Gas-Dynamic Ignitor," Translated from Khimicheskoe I Neftyanoe mashinostroenie, No. 7, pp. 9-11, July 1988.