DOI QR코드

DOI QR Code

Microencapsulation of SrAl2O4 : Eu2+,Dy3+ Phosphorescent Phosphor for Enhanced Visibility of Road Lanes

차선의 시인성 향상을 위한 SrAl2O4 : Eu2+,Dy3+ 축광 마이크로 캡슐화에 관한 연구

  • Park, Jae Il (School of Applied Chemical Engineering, Kyungpook National University) ;
  • Jeong, Soo Hwan (School of Applied Chemical Engineering, Kyungpook National University) ;
  • Cheong, In Woo (School of Applied Chemical Engineering, Kyungpook National University)
  • 박재일 (경북대학교 응용화학공학부) ;
  • 정수환 (경북대학교 응용화학공학부) ;
  • 정인우 (경북대학교 응용화학공학부)
  • Received : 2016.08.29
  • Accepted : 2016.09.03
  • Published : 2016.09.30

Abstract

A decrease in the retro-reflectivity of glass-bead-covered road paint because of a rainwater film significantly reduces the visibility of drivers at night, and has been considered as a critical cause of traffic accidents. For enhanced visibility, the microencapsulation of hydrophobically modified $SrAl_2O_4:Eu^{2+}$,$Dy^{3+}$ phosphorescent phosphor was carried out via suspension polymerization of methyl methacrylate (MMA). The effects of surface modification agent and radical initiator types, loading amount of phosphorescent phosphor, and microcapsule size on the phosphor content ($W_{TGA}$) in the luminous poly(methyl methacrylate) (PMMA) microcapsules were investigated by thermogravimetric analyses (TGA). It was found that the $W_{TGA}$ value was ranged from 7 wt% to 81 wt%, which suggests suspension polymerization is suitable for the preparation of luminous microcapsules with a wide range of phosphor content. At a lower loading amount of phosphor, the $W_{TGA}$ value obviously increased as the microcapsule size decreased; however, the $W_{TGA}$ values with a higher loading amount of phosphor were less affected by the microcapsule size. The luminous microcapsules with the size range of $425{\sim}710{\mu}m$ were collected and tested as a luminous road lanes. It was found that luminance intensities of the microcapsule-coated plates remained higher than $300mcd/m^2$ for up to 100 s in darkness after 20 min of light emitting diode lamp irradiation. The results suggest that the luminous microcapsules can be a candidate for the replacement of glass beads for enhanced visibility of drivers.

야간 우천시 수막에 의한 차선의 재귀반사 효율 감소로 운전자의 시인성이 저하되고 있으며 이로 인해 많은 사고가 발생한다. 시인성을 높이기 위해 메틸메타크릴레이트의 현탁중합 시 소수성으로 표면이 개질된 $SrAl_2O_4:Eu^{2+}$,$Dy^{3+}$ 축광 물질을 도입하고 이를 캡슐화하였다. 표면 개질에 사용된 물질과 라디칼 개시제의 종류, 사용된 축광 물질의 양, 그리고 캡슐의 입도가 캡슐 내부의 축광 물질 함량($W_{TGA}$)에 미치는 영향을 TGA를 사용하여 분석하였다. 그 결과 축광 물질의 함량은 7~81 wt%까지 넓은 분포를 나타내었으며, 이러한 결과는 현탁중합이 넓은 함량 범위의 축광 물질을 캡슐화하는데 적합한 것을 의미한다. 축광 물질의 함량이 낮은 경우에는 캡슐의 입도가 감소함에 따라 $W_{TGA}$이 증가하였으나, 축광 물질의 함량이 높을 때에는 캡슐의 입도에 별 영향을 받지 않았다. 축광 캡슐 중 지름 $425{\sim}710{\mu}m$의 축광 캡슐을 활용하여 형광 차선 시편을 제작하였으며 LED램프를 20 min 동안 조사한 후 광원을 제거하였을 때, 100 s 동안 약 $300mcd/m^2$ 이상의 휘도를 유지했다. 이러한 결과로 미루어 보아 제조된 축광 캡슐은 차선 위의 유리 비드를 대체하기에 충분한 가능성을 가짐을 알 수 있었다.

Keywords

References

  1. K. W. Lee, S. A. Cardi, and S. Corrigan, "Implementation and evaluation of traffic marking recesses for application of thermoplastic pavement markings on modified open graded friction course", http://www.uvm.edu/-transctr/pdf/netc/netcr23_95-3.pdf (2000).
  2. C. G. Lee, H. S. Lee, and H. U. Oh, Kor. Soc. Road. Engineers, 14, 9 (2012).
  3. http://www.euroadbead.eu/wp-content/uploads/2015/04/SWARCO-presentation-glassbeads-dec07.pdf.
  4. A. C. Miller and J. C. Berg, Compos. Part A: Appl. S., 34, 327 (2003). https://doi.org/10.1016/S1359-835X(03)00051-4
  5. L. R. Gilbert and A. J. Ouderkirk, U.S. Patent, 5, 699,188 (1997).
  6. N. Sombatsompop and K. Chaochanchaikul, J. Appl. Polym. Sci., 96, 213 (2005). https://doi.org/10.1002/app.21422
  7. R. P. Thornton, R. G. Elliman, and J. S. Williams, J. Mater. Res., 5, 1003 (1990). https://doi.org/10.1557/JMR.1990.1003
  8. R. Bacero, D. To, J. P. Arista, M. K. Dela Cruz, J. P. Villaneva, and F. A. Uy, J. Eastern. Asia. Soc. Transp. Stud., 11, 1726 (2015).
  9. X. Li, H. Wang, L. Guan, Y. Fu, Z. Guo, K. Yuan, L. Tie, Z. Yang, and F. Teng, J. Rare. Earths., 33, 346 (2015). https://doi.org/10.1016/S1002-0721(14)60424-5
  10. Y. C. Kang, S. B. Park, I. W. Lenggoro, and K. Okuyama, J. Phys. Chem. Solids., 60, 379 (1999). https://doi.org/10.1016/S0022-3697(98)00266-2
  11. T. L. Metroke, O. Kachurina, and E. T. Knobbe, Prog. Org. Coat., 44, 295 (2002). https://doi.org/10.1016/S0300-9440(02)00063-2
  12. L. Sanchez, P. Sanchez, M. Carmona, A. de Lucas, and J. F. Rodriguez, Colloid Polym. Sci., 286, 1019 (2008). https://doi.org/10.1007/s00396-008-1864-4
  13. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, J. Electrochem. Soc., 143, 2670 (1996). https://doi.org/10.1149/1.1837067
  14. P. F. Smet, N. Avci, K. V. den Eeckhout, and D. Poelman, Opt. Mater. Express, 2, 1306 (2012). https://doi.org/10.1364/OME.2.001306
  15. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Prog. Polym. Sci., 38, 1232 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003
  16. M. Uyanik, Ph. D. Thesis. Saarland University, Saarbrucken (2008).
  17. C. W. Yi, J. Korean. Inst. Illum. Elect. Installation Eng., 25, 32 (2011).
  18. D. M. Qi, Y. Z. Bao, Z. X. Weng, and Z. M. Huang, Polymer, 47, 4622 (2006). https://doi.org/10.1016/j.polymer.2006.04.024
  19. I. P. Sahu, D. P. Bisen, N. Brahme, and R. K. Tamrakar, J. Radiat. Res. Appl. Sci., 8, 104 (2015). https://doi.org/10.1016/j.jrras.2014.12.006
  20. D. P. Bisen and R. Sharma, Luminescence, 31, 394 (2016). https://doi.org/10.1002/bio.2972
  21. G. S. Patil, R. H. Matthews, and D. G. Cornwell, J. Lipid Res., 17, 197 (1976).
  22. F. H. Winslow and W. Matreyek, Ind. Eng. Chem., 43, 1108 (1951). https://doi.org/10.1021/ie50497a031
  23. E. Vivaldo-Lima, P. E. Wood, A. E. Hamielec, and A. Penlidis, Ind. Eng. Chem. Res., 36, 939 (1997). https://doi.org/10.1021/ie960361g
  24. L. Sanchez, P. Sanchez, M. Carmona, A. de Lucas, and J. F. Rodriguez, Colloid Polym. Sci., 286, 1019 (2008). https://doi.org/10.1007/s00396-008-1864-4
  25. A. E. Alexander and D. H. Napper, Prog. Polym. Sci., 3, 145 (1971). https://doi.org/10.1016/0079-6700(71)90004-9
  26. N. V. N. Jyothi, P. M. Prasanna, S. N. Sakarkar, K. S. Prabha, P. S. Ramaiah, and G. Y. Srawan, J. Microencapsul., 27, 187 (2010). https://doi.org/10.3109/02652040903131301
  27. Y. Yokoyama, K. Fuchigami, Y. Taguchi, and M. Tanaka, J. Encapsul. Adsorpt. Sci., 3, 93 (2013). https://doi.org/10.4236/jeas.2013.33011
  28. J. A. Alduncin, J. Forcada, and J. M. Asua, Macromolecules, 27, 2256 (1994). https://doi.org/10.1021/ma00086a041
  29. S. B. Mishra, A. K. Mishra, A. S. Luyt, N. Revaprasadu, K. T. Hillie, W. J. vdM Steyn, E. Coetsee, and H. C. Swart, J. Appl. Polym. Sci., 115, 579 (2010). https://doi.org/10.1002/app.30976
  30. R. E. Rojas-Hernandez, F. Rubio-Marcos, E. Enriquez, M. A. De La Rubia, and J. F. Fernandez, RSC Adv., 5, 42559 (2015). https://doi.org/10.1039/C5RA04878H
  31. Y. J. He, Powder. Technol., 147, 59 (2004). https://doi.org/10.1016/j.powtec.2004.09.038

Cited by

  1. Development of a cyan blue-emitting Ba3La2(BO3)4:Ce3+,Tb3+ phosphor for use in dental glazing materials: color tunable emission and en vol.11, pp.40, 2021, https://doi.org/10.1039/d1ra04384f