DOI QR코드

DOI QR Code

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors

광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구

  • 권일범 (한국표준과 학연구원 안전측정센터) ;
  • 변종현 (파이버프로 기술연구소) ;
  • 전민용 (충남대학교 물리학과)
  • Received : 2016.07.15
  • Accepted : 2016.11.15
  • Published : 2016.12.30

Abstract

In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

한 개의 감지 광섬유 라인으로 분포 온도와 몇 개의 변형률을 측정할 수 있는 새로운 광섬유 센서 연구를 수행하였다. 분포 온도는 감지 광섬유의 라만 안티-스토크스 산란광을 시간영역 반사계(OTDR: optical time domain reflectometry)로 측정하고, 변형률은 광섬유 브래그 격자(FBG: fiber Bragg grating)를 사용하여 측정하였다. 분포 온도는 4 km의 단일 모드 광섬유의 감지 광섬유로부터 안티-스토크스 후방 산란광을 양방향에서 취득하고 새로이 고안된 수식으로 온도를 계산하였다. 온도 실험은 감지 광섬유의 중간쯤에서 약 50 m의 광섬유 부분의 온도를 $30^{\circ}C$부터 $70^{\circ}C$까지 $10^{\circ}C$ 간격으로 변화시키면서 실험한 결과 온도 측정 오차 범위는 $0.50^{\circ}C$이하로 확인되었다. 또한 감지 광섬유에 설치된 FBG는 변위 스테이지로 변형시키고 파장 변화를 광학 스펙트럼 분석기로 측정한 결과 각각 0.10 nm, 0.17 nm, 0.29 nm, and 0.00 nm를 얻었다. 이러한 파장 이동은 각각 $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, $0.00{\mu}{\epsilon}$에 해당되었다.

Keywords

References

  1. I.-B. Kwon, "Structural health monitoring using fiber optic sensors," Journal of the Korean Society for Nondestructive Testing, Vol. 25, No. 5, pp. 400-404 (2005)
  2. G. J. Lee, S. G. Choi and D. H. Noh, "The study on the fiber optic sensor for the distributed temperature measurement," Proceedings of the 12th KACC, pp. 1746-1749 (1997)
  3. P. C. Wait, K. De Souza and T. P. Newson "A theoretical comparison of spontaneous Raman and Brillouin based fiber optic distributed temperature sensors", Optical Communications, Vol. 144, pp. 17-23 (1997) https://doi.org/10.1016/S0030-4018(97)00482-3
  4. P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vakovic, C. R. Nagarajah and D. J. Booth "Fiber optic distributed temperature sensor with an integrated background correction function," Measurement Science and Technology, Vol. 16, pp. 1299-1304 (2005) https://doi.org/10.1088/0957-0233/16/6/009
  5. G.-J. Kim, I.-B. Kwon, D.-J. Yoon, D. Hwang and Y. Chung, "Reflection signal analysis for time division multiplexing of fiber optic FBG sensors," Journal of the Korean Society for Nondestructive Testing, Vol. 30, No. 1, pp. 6-12 (2010)
  6. A. Kimura, E. Takada, K. Fujita, M. Nakazawa, H. Takahashi and S. Ichige, "Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques," Measurement Science and Technology, Vol. 12, pp. 966-973 (2001)
  7. G. Yilmaz and S. E. Karlik "A distributed optical fiber sensor for temperature detection in power cables," Sensors and Actuators A, Vol. 125, pp. 148-155 (2006) https://doi.org/10.1016/j.sna.2005.06.024
  8. K. Suh and C. Lee, "Auto-correction method for differential attenuation in a fiber-optic distributed-temperature sensor," Optics Letters, Vol. 33, pp. 1845-1847 (2008). https://doi.org/10.1364/OL.33.001845
  9. J. H. Lee and D. H. Kim, "Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor," Journal of the Korean Society for Nondestructive Testing, Vol. 36, No. 3, pp. 211-216 (2016) https://doi.org/10.7779/JKSNT.2016.36.3.211
  10. H. Y. Kim, D. Kang and D. H. Kim, "Reliability Evaluation of Fiber Optic Sensors Exposed to Cyclic Thermal Load," Journal of the Korean Society for Nondestructive Testing, Vol. 36, No. 3, pp. 225-230 (2016) https://doi.org/10.7779/JKSNT.2016.36.3.225
  11. F. Zaidi and T. Nannipieri, M. A. Soto, A. Signorini, G. Bolognini and F. Di Pasquale, "Integrated hybrid Raman/fiber Bragg grating interrogation scheme for distributed temperature and point dynamic strain measurements," Applied Optics, Vol. 51, Issue 30, pp. 7268-7275 (2012) https://doi.org/10.1364/AO.51.007268
  12. D. Hwang, D.-J. Yoon, I.-B. Kwon, D.-C. Seo and Y. Chung, "Novel autocorrection method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering," Optics Express, Vol. 18, pp. 9747-9754 (2010) https://doi.org/10.1364/OE.18.009747
  13. J. M. Lopez-Higuera, "Handbook of Optical Fibre Sensing Technology," Wiley, New York, (2002)
  14. J. P. Dakin, D. J. Pratt, G. W. Bibby and J. N. Ross, "Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector," Electronic Letters, Vol. 21, No. 13, pp. 569-570 (1985) https://doi.org/10.1049/el:19850402
  15. Derek A. Long, "The Raman Effect : A Unified Treatment of the Theory of Raman Scattering by Molecules," (2002)
  16. J-K. Min, "A Study on the Distributed Optical-Fiber Temperature Sensor using Raman Scattering", Chonbuk National University Electrical Engineering (1995)
  17. K-J. Lee, S-G. Choi, D-H. Noh, "The Study on the Fiber Optic Sensor for the Distributed Temperature Measurement", KACC 12, 1746-1749 (1997)
  18. J-K. Min, S-G. Choi, D-H. Noh, "A Study on the Distributed Temperature Sensor System using Scattering Light in Optical fiber", journal of chonbuk national university, Vol. 41, 75-80 (1996)