DOI QR코드

DOI QR Code

Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

  • Rahimi-Midani, Aryan (Department of Microbiology, Pukyong National University) ;
  • Kim, Kyoung-Ho (Department of Microbiology, Pukyong National University) ;
  • Lee, Seon-Woo (Department of Applied Biology, Dong-A University) ;
  • Jung, Sang Bong (Department of Clinical Laboratory Science, Dong-Eui Institute of Technology) ;
  • Choi, Tae-Jin (Department of Microbiology, Pukyong National University)
  • Received : 2016.07.11
  • Accepted : 2016.08.04
  • Published : 2016.12.01

Abstract

Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of $100{\pm}5nm$ and tail of $200{\pm}5nm$, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene). Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

Keywords

References

  1. Asare, P. T., Ryu, S. and Kim, K. P. 2015. Complete genome sequence and phylogenetic position of the Bacillus cereus group phage JBP901. Arch. Virol. 160:2381-2384. https://doi.org/10.1007/s00705-015-2485-0
  2. Bailly-Bechet, M., Vergassola, M. and Rocha, E. 2007. Causes for the intriguing presence of tRNAs in phages. Genome Res. 17:1486-1495. https://doi.org/10.1101/gr.6649807
  3. Balogh, B., Jones, J. B., Iriarte, F. B. and Momol, M. T. 2010. Phage therapy for plant disease control. Curr. Pharm. Biotechnol. 11:48-57. https://doi.org/10.2174/138920110790725302
  4. Bandara, N., Jo, J., Ryu, S. and Kim, K. P. 2012. Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiol. 31:9-16. https://doi.org/10.1016/j.fm.2012.02.003
  5. Cairns, B. J. and Payne, R. J. 2008. Bacteriophage therapy and the mutant selection window. Antimicrob. Agents Chemother. 52:4344-4350. https://doi.org/10.1128/AAC.00574-08
  6. Chang, W. T., Chen, Y. C. and Jao, C. L. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour. Technol. 98:1224-1230. https://doi.org/10.1016/j.biortech.2006.05.005
  7. Emmert, E. A. and Handelsman, J. 1999. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  8. Erill, I. and Caruso, S. M. 2015. Complete genome sequence of Bacillus cereus group phage tsarbomba. Genome Announc. 3:e01178-15.
  9. Fujiu, M., Sawairi, S., Shimada, H., Takaya, H., Aoki, Y., Okuda, T. and Yokose, K. 1994. Azoxybacilin, a novel antifungal agent produced by Bacillus cereus NR2991. Production, isolation and structure elucidation. J. Antibiot. 47:833-835. https://doi.org/10.7164/antibiotics.47.833
  10. Gillis, A. and Mahillon, J. 2014. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 6:2623-2672. https://doi.org/10.3390/v6072623
  11. He, H., Silo-Suh, L. A., Handelsman, J. and Clardy, J. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35:2499-2502. https://doi.org/10.1016/S0040-4039(00)77154-1
  12. King, A. M. Q., Adams, M. J., Carstens, E. B. and Lefkowitz, E. J. 2012. Virus taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, CA, USA. 1327 pp.
  13. Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, eds. by E. Stackebrandt and M. Goodfellow, pp. 115-175. John Wiley and Sons, New York, NY, USA.
  14. Lee, J. H., Shin, H. and Ryu, S. 2014. Characterization and comparative genomic analysis of bacteriophages infecting member of the Bacillus cereus group. Arch. Virol. 159:871-884. https://doi.org/10.1007/s00705-013-1920-3
  15. Lee, J. H., Shin, H., Son, B. and Ryu, S. 2012. Complete genome sequence of Bacillus cereus bacteriophage BCP78. J. Virol. 86:637-638. https://doi.org/10.1128/JVI.06520-11
  16. Park, J., Yun, J., Lim, J. A., Kang, D. H. and Ryu, S. 2012. Characterization of an endolysin, LysBPS13, from a Bacillus cereus bacteriophage. FEMS Mirobiol. Lett. 332:76-83. https://doi.org/10.1111/j.1574-6968.2012.02578.x
  17. Scholthof, K. B. G. 2007. The disease triangle: pathogens, the environment and society. Nat. Rev. Microbiol. 5:152-156. https://doi.org/10.1038/nrmicro1596
  18. Schuch, R., Nelson, D. and Fischetti, V. A. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884-889. https://doi.org/10.1038/nature01026
  19. Shin, H., Bandara, N., Shin, E., Ryu, S. and Kim, K. P. 2011. Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901. Res. Microbiol. 162:791-797. https://doi.org/10.1016/j.resmic.2011.07.001
  20. Song, J. Y., Kwak, M. J., Lee, K. Y., Kong, H. G., Kim, B. K., Kwon, S. K., Lee, S. W. and Kim, J. F. 2012. Draft genome sequence of the antifungal-producing plant-benefiting bacterium Burkholderia pyrrocinia CH-67. J. Bacteriol. 194:6649-6650. https://doi.org/10.1128/JB.01779-12
  21. Sullivan, M. J., Petty, N. K. and Beatson, S. A. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009-1010. https://doi.org/10.1093/bioinformatics/btr039
  22. Tourasse, N. J., Helgason, E., Okstad, O. A., Hegna, I. K. and Kolsto, A. B. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J. Appl. Microbiol. 101:579-593. https://doi.org/10.1111/j.1365-2672.2006.03087.x
  23. Zink, R. and Loessner, M. J. 1992. Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl. Environ. Microbiol. 58:296-302.