Recent NMR developments for pharmaceutical research

  • Received : 2015.12.10
  • Accepted : 2016.02.19
  • Published : 2016.03.20


NMR spectrometer has been regarded as essential tool for structure elucidation in variable scientific field as like organic synthesis, natural product and macro protein research. Also NMR can be applied for defining dynamic behavior like ligand and receptor binding. One of advantage of research with NMR is that to be great confident to confirm structure and the measured sample could be recovered. Nevertheless NMR also has a weak points than other spectroscopic methods that require a lot of time for interpreting acquired spectrum and running time due to low sensitivity. For last two decade Bruker has developed hardware and software solution for overcome those weak points. In order to overcome low sensitivity Bruker introduced Cryo and Micro diameter probe head technology. And researcher can reduce the time for routine spectrum processing and interpretation works due to lots of introductions in software solutions for quantification, identification and statistics analysis. With four examples, this article describing those new hardware and software solutions in field of recent pharmaceutical research as follows. - New Horizons for NMR in the Biopharmaceutical Industry - The development and application of solid-state NMR spectroscopy (SSNMR) in pharmaceutical analysis - Assisted NMR Data Interpretation in Synthetic Chemistry - Complete Analysis of New Psychoactive Substances Using NMR.



  1. L. W. Arbogast, R. G. Brinson and J. P. Marino, Analytical Chemistry 87, 3556-3561 (2015)
  2. S. Goswami, W. Wang, T. Arakawa, et al, Antibodie. 2, 452-500 (2013)
  3. L. Poppe, J. B. Jordan, G. Rogers, et al, Analytical Chemistry 87, 5539-5545 (2015)
  4. M. Geppi, G. Mollica, S. Borsacchi, and C. A. Veracini, Applied Spectroscopy Reviews 43, 202-302 (2008)
  5. F. G. Vogt, Future Medicinal Chemistry 2, 915-921 (2010)
  6. P. K. Madhu, Solid State Nucl. Magn. Reson. 35, 2-11 (2009)
  7. A. J. Rossini, A. Zagdoun, F. Hegner, M. Schwarzwalder, D. Gajan, C. Coperet, A. Lesage, and L. Emsley, J. Am. Chem. Soc. 134, 16899-16908 (2012)
  8. T. C. Ong, M. L. Mak-Jurkauskas, J. J. Walish, V. K. Michaelis, B. Corzilius, A. A. Smith, A. M. Clausen, J. C. Cheetham, T. M. Swager, and R. G. Griffin, J. Phys. Chem. B. 117, 3040-3046 (2013)
  9. A. S. Tatton, T. N. Pham, F. G. Vogt, D. Iuga, A. J. Edwards, and S. P. Brown, Mol. Pharm. 10, 999-1007 (2013)
  10. F. G. Vogt, H. Yin, R. G. Forcino, and L. Wu, Mol. Pharm. 10, 3433-3446 (2013)
  11. H. Hamaed, J. M. Pawlowski, B. F. T. Cooper, R. Q. Fu, S. H. Eichhorn, and R. W. Schurko, J. Am. Chem. Soc. 130, 11056-11065 (2008)
  12. J. R. Patel, R. A. Carlton, T. E. Needham, C. O. Chichester, and F. G. Vogt, Int. J. Pharm. 436, 685-706 (2012)
  13. M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P. M. Borchard, S. R. Cauffman, K. L. Felch, R. T. Weber, R. J. Temkin, R. G. Griffin, and W. E. Maas, Phys. Chem. Chem. Phys. 12, 5850-5860 (2010)
  14. H. Lebel, C. Trudel, and C. Spitz, Chem Commun. 48, 7799 (2012)
  15. 'Global Synthetic Drugs Assessment' report, UNODC,, accessed 18 Dec 2014.
  16., accessed 18 Dec 2014.
  17., accessed 18 Dec 2014.