DOI QR코드

DOI QR Code

Searching Methods of Corresponding Points Robust to Rotational Error for LRF-based Scan-matching

LRF 기반의 스캔매칭을 위한 회전오차에 강인한 대응점 탐색 기법

  • Jang, Eunseok (Department of Electronic and Computer Engineering, Pusan National University) ;
  • Cho, Hyunhak (Department of Interdisciplinary Cooperative Course: Robot, Pusan National University) ;
  • Kim, Eun Kyeong (Department of Electronic and Computer Engineering, Pusan National University) ;
  • Kim, Sungshin (Department of Electronic and Computer Engineering, Pusan National University)
  • 장은석 (부산대학교 전기전자컴퓨터공학과) ;
  • 조현학 (부산대학교 로봇관련협동과정) ;
  • 김은경 (부산대학교 전기전자컴퓨터공학과) ;
  • 김성신 (부산대학교 전기전자컴퓨터공학과)
  • Received : 2016.11.18
  • Accepted : 2016.12.15
  • Published : 2016.12.25

Abstract

This paper presents a searching method of corresponding points robust to rotational error for scan-matching used for SLAM(Simultaneous Localization and Mapping) in mobile robot. A differential driving mechanism is one of the most popular type for mobile robot. For driving curved path, this type controls the velocities of each two wheels independently. This case increases a wheel slip of the mobile robot more than the case of straight path driving. And this is the reason of a drifting problem. To handle this problem and improves the performance of scan-matching, this paper proposes a searching method of corresponding points using extraction of a closest point based on rotational radius of the mobile robot. To verify the proposed method, the experiment was conducted using LRF(Laser Range Finder). Then the proposed method is compared with an existing method, which is an existing method based on euclidian closest point. The result of our study reflects that the proposed method can improve the performance of searching corresponding points.

본 논문은 모바일 로봇의 SLAM(Simultaneous Localization and Mapping) 구현 시 사용되는 스캔매칭을 위한 회전오차에 강인한 대응점 탐색 기법을 제시한다. 많은 모바일 로봇의 연구에 차동구동방식의 구동부가 사용되는데, 이는 곡선 주행이나 제자리 회전을 위해 두 모터의 속력을 다르게 하거나, 반대 방향으로 제어하게 된다. 이러한 경우 직선 주행에 비해 비교적 바퀴의 미끄러짐 현상(Wheel Slip)을 심화시켜 모바일 로봇의 누적 위치 오차를 증가시키는 요인이 된다. 따라서 본 논문에서는 모바일 로봇의 회전 반경을 기반으로 최근접점을 추출하는 대응점 탐색 기법을 통해 스캔매칭 성능을 향상시키고자 한다. 제안된 방법의 검증을 위해 LRF(Laser Range Finder)를 이용해 실험을 진행하였으며, 기존 알고리즘에 주로 적용되는 유클리디안 최근접점 기반의 대응점 탐색 알고리즘과 비교한 결과, 제안된 대응점 탐색 기법이 보다 정확하게 대응점 집합을 추출하는 것을 확인했다.

Keywords

References

  1. J. H. Joseph Yun, et al., "The relationship between technology, business model, and market in autonomous car and intelligent robot industries," Technological Forecasting and Social Change, vol. 103, pp. 142-155, 2016. https://doi.org/10.1016/j.techfore.2015.11.016
  2. P. Pavlinek, "The internationalization of corporate R&D and the automotive industry R&D of East-Central Europe," Economic Geography, vol. 88, no. 3, pp. 279-310, 2012. https://doi.org/10.1111/j.1944-8287.2012.01155.x
  3. T. G. Kim, N. Y. Ko, and S. W. Noh, "Simultaneous estimation of landmark localization and robot pose using particle filter method," Journal of Korean Institute of Intelligent System, vol. 22, no. 3, pp. 353-360, 2012. https://doi.org/10.5391/JKIIS.2012.22.3.353
  4. C. H. Choi, and B. J. Lee, "A study on fisheye lens based features on the ceilling for self-localization," Journal of Korean Institute of Intelligent System, vol. 21, no. 4, pp. 442-448, 2011. https://doi.org/10.5391/JKIIS.2011.21.4.442
  5. H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part 1," IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, 2006.
  6. O. S. Kwon, B. Y. Hyeon, and K. S. Seo, "An improved FastSLAM algorithm using fitness sharing technique," Journal of Korean Institute of Intelligent System, vol. 22, no. 4, pp. 487-493, 2012. https://doi.org/10.5391/JKIIS.2012.22.4.487
  7. H. D. Kim, et al., "Simultaneous localization and mapping of mobile robot using digital magnetic compass and ultrasonic sensors," Journal of Korean Institute of Intelligent System, vol. 17, no. 4, pp. 506-510, 2007. https://doi.org/10.5391/JKIIS.2007.17.4.506
  8. C. H. Han, and K. B. Sim, "Real-time mapping of mobile robot on stereo vision," Journal of Korean Institute of Intelligent System, vol. 20, no. 1, pp. 60-65, 2010. https://doi.org/10.5391/JKIIS.2010.20.1.060
  9. H. H. S. Liu and G. K. H. Pang, "Acclerometer for mobile robot positioning," IEEE Transactions on Industry Applications, vol. 37, no. 3, pp. 812-819, 2001. https://doi.org/10.1109/28.924763
  10. F. Gustafsson, "Slip-based tire-road friction estimation," Automatica, vol. 33, no. 6, pp. 1087-1099, 1997. https://doi.org/10.1016/S0005-1098(97)00003-4
  11. J. A. Willians and M. Bennamoun, "Evaluation of a novel multiple point set registration algorithm," Proc. 15th International Conference on Patterns Recognition, IEEE, vol. 1, pp. 1007-1010, 2000.
  12. P. J. Besl and N. D. McKay, "A Method for registration of 3-D shapes," Robotics-DL tentative, International Society for Optics and Photonics, pp. 586-606, 1992.
  13. P. Bergstrom and O. Edlund, "Robust registration of point sets using iteratively reweighted least squares," Computational Optimization and Applications, vol. 58, no. 3, pp. 543-561, 2014. https://doi.org/10.1007/s10589-014-9643-2
  14. R. Sanz-Cortiella, et al., "Characterisation of the LMS200 laser beam under the influence of blockage surface. Influence on 3D scanning of tree orchards," Sensors, vol. 11, no. 3, pp. 2751-2772, 2011. https://doi.org/10.3390/s110302751
  15. K. S. Arun, T. S. Huang, and S. D. Blostein, "Least-squares fitting of two 3-D point sets," IEEE Transactions on pattern analysis and machine intelligence, no. 5, pp. 698-700, 1987.