DOI QR코드

DOI QR Code

토양측정망 확대 지점의 토양 유기물 함량 연구

Analysis of the Organic Matter Content for Soil Samples Taken at the New Points of Korea Soil Quality Monitoring Network

  • Lee, Sojin (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Jinjoo (Department of Environmental Engineering, Kunsan National University) ;
  • Jeong, Seung-Woo (Department of Environmental Engineering, Kunsan National University)
  • 투고 : 2016.09.05
  • 심사 : 2016.12.09
  • 발행 : 2016.12.31

초록

토양 유기물은 농작물에 영양분을 공급하는 중요한 토양 구성분이며 오염물질의 이동을 감소시켜 인체 및 생태에 미치는 영향을 완충하는 역활을 한다. 최근 지구온난화를 야기하는 온실기체의 싱크탱크 역활이 부각되면서 토양 유기물에 대한 조사 및 관리방안에 대한 관심이 고조되고 있다. 본 연구의 목적은 첫째, 환경부 토양측정망 495개 지점에서 채취한 토양의 유기물함량을 측정하여 지역별, 토지용도별 토양 유기물함량을 파악하고자 하였고 둘째, 토양 유기물 함량 측정방법인 Tyurin산화법과 강열감량법(LOI)의 상관관계를 조사하였다. Tyurin법과 강열감량법으로 토양 유기물 함량을 조사한 결과 평균은 각 각 1.90%, 2.92%로 나타났다. 토지용도별 유기물 함량 순서는 Tyurin법 및 강열감량법 모두 유사하였다. 여전히 자연환경 요소가 많이 남아있거나 토양으로 유기물 유입이 지속적으로 일어나는 임야, 종교용지, 공원은 비교적 높은 유기물함량을 보이나, 유기물 유입이 상대적으로 적은 대지와 대부분 사질토양으로 구성된 학교용지는 낮은 유기물함량을 보였다. Tyurin법과 강열감량법간 회귀분석결과 y(Tyurin) = 0.6257x(LOI) + 0.0602 (P-value < 0.001)와 같은 회귀식이 얻어졌고 결정계수 $R^2=0.749$로 나타나 상관성이 높았다. Tyurin법과 강열감량법을 비교한 결과 강열감량법의 결과치가 Tyurin법에 비해 크게 측정되지만 Tyurin법과 상관관계가 성립되는 바 여러 토지용도에서 많은 양의 토양시료를 측정해야 하는 목적에서는 강열감량법 적용도 가능할 것으로 판단된다.

Soil organic matter (SOM) is an important soil component releasing nutrients to the plants and reducing risks of soil contamination to the human and ecosystem. Much attention has been recently paid to SOM investigation and management because SOM holds the most of carbon in the earth and sequestrate carbon as a sink tank. The first objective of the study was to investigate SOM of 495 soil samples taken at the Korea Soil Quality Monitoring Network. Soil samples were collected from 16 regions and 8 land use types. The second objective of the study was to find a relationship between the Tyurin method and loss-on-ignition (LOI) method for SOM. The means of SOM by Tyurin and LOI methods were 1.90 and 2.92 % (w/w), respectively. Land uses such as forest, religious area and park where organic matters continuously supply to normally showed higher SOMs than residential and school areas having sandy soils. A regression equation of the relationship between Tyurin and LOI methods was y(Tyurin) = 0.6257x(LOI) + 0.0602 (P-value < 0.001). The coefficient of determination was $R^2=0.749$, relatively linearly related. Although LOI may result in higher SOMs than the Tyurin method, LOI may be a preference for the SOM investigation if various kinds of land uses and many soil samples should be measured.

키워드

참고문헌

  1. Hyeon, G. S., Park, C. S. Jung, S. J. Rim, S. K. and Um, K. T., "Soil CEC for textural classes in Korea," J. Korean Soc. Soil Sci. Fert., 24(1), 10-16(1991).
  2. Stevenson, F. J., "Humus Chemistry: Genesis, Composition, Reactions," 2nd ed, Wiley(1994).
  3. Nortcliff, S., "Soil Organic Matter-the potential benefits and necessary precautions required in the use of composts and biosolids as soil amendments in agroecosystems,"In: Yang, J. E., Sa, T. M. and Kim, J. J. (eds.) Application of the Emerging Soil Researches to the Conservation of Agricultural Ecosystems. KSSSF-KSAE-RDA, Seoul, pp. 81-93(2005).
  4. Ministry of Environment, Risk Assessment Guidelines for Soil Contamination, Sejong, Bulletin 2015-64, Korea(2015).
  5. Intergovernmental Technical Panel on Soils, Can Carbon (SOC) Offset the Climate Change, Food and Agriculture Organization of the United Nations, Rome, Italy(2015).
  6. Bot, A. and Benites, J., The Importance of Soil Organic Matter: Key to drought-resistant soil and sustained food and production, Food and Agriculture Organization of the United Nations, Rome, Italy(2005).
  7. National Academy of Agricultural Science, Method of Soil Chemical Analysis, Korea(2010).
  8. Wang, J. P., Wang, X. J. and Zhang, J., "Evaluating Losson-Ignition Method for Determinations of Soil Organic and Inorganic Carbon in Arid Soils of Northwestern China," Pedosphere, 23(5), 593-599(2013). https://doi.org/10.1016/S1002-0160(13)60052-1
  9. Ministry of Environment, Standard Methods for Soil Analysis, ES07301.1 Moisture Content(2009).
  10. Ministry of Environment, Standard Methods for Soil Analysis, ES07130 Sampling and preparing of soil sample(2009).
  11. Oh, W. K., "Effects of organic materials on soil chemical properties," J. Korean Soc. Soil, Sci. Fert., 11(3), 161-174 (1978).
  12. National Academy of Agricultural Science, 2007 Annual Report of the Monitoring Project on Agro-Environmental Quality, Rural Development Aency(2008).
  13. National Academy of Agricultural Science, 2009 Annual Report of the Monitoring Project on Agro-Environmental Quality, Rural Development Aency(2010).
  14. National Academy of Agricultural Science, 2010 Annual Report of the Monitoring Project on Agro-Environmental Quality, Rural Development Aency(2011).
  15. National Academy of Agricultural Science, 2011 Annual Report of the Monitoring Project on Agro-Environmental Quality, Rural Development Aency(2012).
  16. Mikutta, R., Kleber, M., Kaiser, K. and Jahn, R., "Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate," Soil Sci. Soc. America J., 69(9), 120-135(2015).
  17. Hoogsteen, M. J. J., Lantinga, E. A., Bakker, E. J., Groot, J. C. J. and Tittonell, P. A., "Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss," Eur. J. Soil Sci., 66(2), 320-328(2015). https://doi.org/10.1111/ejss.12224
  18. Wang, X., Wang, J. and Zhang, J., "Comparisons of three methods for organic and inorganic carbon in calcareous soils of Northwestern China," PLOS ONE, 7(8), 1-6(2012).
  19. Seo, M. C., So, K. H., Ko, B. G. and Son, Y. K., "Comparison of tyurin method and dry combustion method for carbon analysis in soils of low inorganic carbon content," J. Korean Soc. Soil, Sci. Fert., 37(5), 315-321(2004).