DOI QR코드

DOI QR Code

폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol

  • 엄원숙 (서울과학기술대학교 환경공학과) ;
  • 이한샘 (서울과학기술대학교 환경공학과) ;
  • 이동석 (강원대학교 환경공학과) ;
  • 신현상 (서울과학기술대학교 환경공학과)
  • Eom, Won-Suk (Department of Environmental Engineering, Seoul National University of Sience and Technology) ;
  • Lee, Han-Saem (Department of Environmental Engineering, Seoul National University of Sience and Technology) ;
  • Rhee, Dong-Seok (Department of Environmental Engineering, Kangwon National University) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Sience and Technology)
  • 투고 : 2016.10.12
  • 심사 : 2016.11.18
  • 발행 : 2016.11.30

초록

본 연구에서는 폐 알칼리망간전지 분말(spent alkaline manganese battery powder, SABP <8 mesh)의 산 침출액으로부터 분리한 망간이온을 이용하여 산화-중합반응 촉매인 버네사이트를 제조하였고, 1-naphthol (1-NP)을 대상으로 페놀계 화합물의 제거 반응성을 조사하였다. 망간산화물의 결정상과 반응성은 순수 망간시약($MnSO_4$, $MnCl_2$)을 사용하여 합성한 망간산화물(manganese oxide, MOs) 및 기존의 McKenzie 합성방법에 의한 Acid birnessite (A-Bir)의 결과와도 비교 평가하였다. SABP에 존재하는 망간과 아연이온은 과산화수소 존재 하에서의 황산 침출($1.0M\;H_2SO_4+10.5%\;H_2O_2$, solid/liquid (S/L)비=1/10 g/mL, $60^{\circ}C$)을 통해 각각 약 96%와 98% 회수하였다. 산 침출액으로부터 망간이온은 수산화물(NaOH) 침전을 통해 pH 8과 pH>13 조건에서 각각 69.0%와 94.3% 분리하였다. 1-NP 제거능을 토대로 SABP 산 침출액으로부터 알칼리(NaOH) 수열합성법에 의한 망간산화물의 제조를 위한 적정 OH/Mn 혼합비(M/M)는 6.0이었고, XRD 분석을 통해 버네사이트(${\delta}-MnO_2$) 결정상을 가짐을 확인하였다. pH 8 (${Mn^{2+}}_{(aq)}$)과 pH>13 ($Mn(OH)_{2(s)}$)에서 회수한 망간을 사용하여 얻은 망간산화물의 1-NP 제거 반응속도(k, at pH 6)는 각각 0.112, $0106min^{-1}$으로서 $MnSO_4$ 시약을 사용하여 얻은 망간산화물의 결과($0.117min^{-1}$)와 유사하였다. 이상의 연구를 통해 폐 알칼리망간전지 분말로부터 얻은 버네사이트는 미량 유해물질 제거를 위한 산화-중합 반응 촉매로 활용 가능함을 알 수 있었으며, 버네사이트 제조를 위한 폐 알칼리망간전지의 재활용 흐름도를 제시하였다.

This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

키워드

참고문헌

  1. Krekeler, M. P., Barrett, H. A., Davis, R., Burnette, C., Doran, T., Ferraro, A. and Meyer, A., "An investigation of mass and brand diversity in a spent battery recycling collection with an emphasis on spent alkaline batteries: Implications for waste management and future policy concerns," J. Power Sources, 203, 222-226(2012). https://doi.org/10.1016/j.jpowsour.2011.11.040
  2. Shin, S. M., Kang, J. G., Yang, D. H. and Sohn, J. S., "Development of metal recovery process from alkaline manganese batteries in sulfuric acid solutions," Mater. Trans., 48(2), 244-248(2007). https://doi.org/10.2320/matertrans.48.244
  3. Sayiland, E., Kukrer, T., Civelekoglu, G., Ferella, F., Akcil, A., Veglio, F. and Kitis, M., "A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries," Hydrometallurgy, 97, 158-166(2009). https://doi.org/10.1016/j.hydromet.2009.02.008
  4. Korea Mineral Resource Information Service, http://www.kores.net/main.do.
  5. Ozel, E., Unluturk, G. and Turan, S., "Production of brown pigments for porcelain insulator applications," J. Eur. Ceramic Soc., 26(4-5), 735-740(2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.037
  6. Post, J. E., "Manganes oxide minerals: crystal structures and economic and environmental significance," Proc. Nat. Acad. Sci., 96(7), 3447-3454(1999). https://doi.org/10.1073/pnas.96.7.3447
  7. Deep, A., Kumar, K., Kumar, P., Kumar, P., Sharma, A. L., Gupta, B. and Bharadwaj, L. M., "Recovery of pure ZnO nanoparticles from spent Zn-$MnO_2$ alkaline batteries," Environ. Sci. Technol., 45(24), 10551-10556(2011). https://doi.org/10.1021/es201744t
  8. Macolino, P., Manci, A. L., De Michelis, I., Anton, M. S., Ilea, P. and Veglio, F., "Manganese recovering from alkaline spent batteries by ammonium peroxodisulfate," Acta Metallurgica Slovaca, 19(3), 212-222(2013).
  9. Gabal, M. A., Al-Luhaibi, R. S. and Al Angari, Y. M., "Mn-Zn nano-crystalline ferrites synthesized from spent Zn-C batteries using novel gelatin method," J. Hazard. Mater., 246, 227-233(2013).
  10. Duan, X., Deng, J., Wang, X., Guo, J. and Liu, P., "Manufacturing conductive polyaniline/graphite nanocomposites with spent battery powder (SBP) for energy storage: A potential approach for sustainable waste management," J. Hazard. Mater., 312, 319-328(2016). https://doi.org/10.1016/j.jhazmat.2016.03.009
  11. Walanda, D. K., Lawrance, G. A. and Donne, S. W., "Hydrothermal $MnO_2$: Synthesis, structure, morphology and discharge performance," J. Power Sources, 139(1), 325-341(2005). https://doi.org/10.1016/j.jpowsour.2004.06.062
  12. Dec, J. and Bollag, J. M., "Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling," Environ. Sci. Technol., 29(3), 657-663(1995). https://doi.org/10.1021/es00003a012
  13. Eom, W. S., Kim, S. H. and Shin, H. S., "Oxidative Transformation of Tetracycline in Aqueous Solution by Birnessite," J. Korean Soc. Environ. Eng., 37(2), 73-80(2015). https://doi.org/10.4491/KSEE.2015.37.2.73
  14. Zhang, J., Li, Y., Wang, L., Zhang, C. and He, H., "Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures," Catal. Sci. Technol., 5(4), 2305-2313(2015). https://doi.org/10.1039/C4CY01461H
  15. Chen, X., Shen, Y. F., Suib, S. L. and O'Young, C. L., "Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants," Chem. Mater., 14(2), 940-948(2002). https://doi.org/10.1021/cm000868o
  16. Yang, D. S. and Wang, M. K., "Syntheses and characterization of well-crystallized birnessite," Chem. Mater., 13(8), 2589-2594(2001). https://doi.org/10.1021/cm010010e
  17. US Environmental Protection Agency, electronic source, http://www.epa.gov/atw/hlthef(2003).
  18. Kursunoglu, S. and Kaya, M., "Dissolution and precipitation of zinc and manganese obtained from spent zinc-carbon and alkaline battery powder," Physicochem. Problems of Mineral Proc., 50(1), 41-55(2014).
  19. Feng, X. H., Liu, F., Tan, W. F. and Liu, X. W., "Synthesis of birnessite from the oxidation of $Mn^{2+}$ by $O_2$ in alkali medium: Effects of synthesis conditions," Clays and Clay Minerals, 52(2), 240-250(2004). https://doi.org/10.1346/CCMN.2004.0520210
  20. McKenzie, R. M., "The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese," Mineralogical Magazine, 38(296), 493-502(1971). https://doi.org/10.1180/minmag.1971.038.296.12
  21. Lim, D. M., Kang, K. H. and Shin, H. S., "Oxidative Transformation of 1-Naphthol Using Manganese Oxide," J. Korean Soc. Environ. Eng., 28(5), 535-542(2006).
  22. Xi, G., Li, Y. and Liu, Y., "Study on preparation of manganese-zinc ferrites using spent Zn-Mn batteries," Mater. Lett., 58(7), 1164-1167(2004). https://doi.org/10.1016/j.matlet.2003.08.029
  23. Tu, Y. J., You, C. F. and Chang, C. K., "Conversion of waste Mn-Zn dry battery as efficient nano-adsorbents for hazardous metals removal," J. Hazard. Mater., 258, 102-108 (2013).
  24. Cheney, M. A., Jose, R., Banerjee, A., Bhowmik, P. K., Qian, S. and Okoh, J. M., "Synthesis and characterization of birnessite and cryptomelane nanostructures in presence of Hoffmeister anions," J. Nanomater., 19, (2009).
  25. Yang, D. S. and Wang, M. K., "Syntheses and characterization of birnessite by oxidizing pyrochroite in alkaline conditions," Clays and Clay Minerals, 50(1), 63-69(2002). https://doi.org/10.1346/000986002761002685