이산화탄소(CO2) 연료화를 위한 메커니즘 이해 및 고효율 촉매 개발

  • 임동희 (충북대학교 환경공학과)
  • 발행 : 2016.12.15

초록

키워드

참고문헌

  1. IPCC (Intergovernmental Panel on Climate Change), 2013, 5th Assessment Report
  2. IPCC (Intergovernmental Panel on Climate Change), 2007, 4th Synthesis Report
  3. Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Davidson, O.; Hare, W.; Huq, S.; Karoly, D.; Kattsov, V., Climate change 2007: synthesis report. Intergovernmental Panel on Climate Change 2007, 20, 2011.
  4. Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D., Advances in CO2 capture technology-The US Department of Energy's carbon sequestration program. International Journal of Greenhouse Gas Control 2008, 2, (1), 9-20. https://doi.org/10.1016/S1750-5836(07)00094-1
  5. Pevida, C.; Plaza, M.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J., Surface modification of activated carbons for CO2 capture. Applied Surface Science 2008, 254, (22), 7165-7172. https://doi.org/10.1016/j.apsusc.2008.05.239
  6. Azuma, M., Hashimoto, K., Hiramoto, M., Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low-Temperature Aqueous KHCO3 Media, Journal of The Electrochemical Society, vol. 137, 1990, pp.1772-1778 https://doi.org/10.1149/1.2086796
  7. Lee, Eun Y.; Hong, D.; Park, Han W.; Suh, Myunghyun P., Synthesis, properties, and reactions of trinuclear macrocyclic nickel(II) and nickel(I) complexes: Electrocatalytic reduction of $CO_2$ by nickel(II) complex. European Journal of Inorganic Chemistry 2003, 2003, (17), 3242-3249. https://doi.org/10.1002/ejic.200200543
  8. De Jesus-Cardona, H.; del Moral, C.; Cabrera, C. R., Voltammetric study of $CO_2$ reduction at Cu electrodes under different KHCO3 concentrations, temperatures and CO2 pressures. Journal of Electroanalytical Chemistry 2001, 513, (1), 45-51. https://doi.org/10.1016/S0022-0728(01)00598-8
  9. Yoshio Hori, Hidetoshi Wakebe, Toshio Tsukamoto and Osamu Koga, "Electrocatalytic process of CO selectivity in electrochemical reduction of $CO_2$ at metal electrodes in aqueous media," Electrochimica Acta, vol. 39, 1994, pp.1833-1839. https://doi.org/10.1016/0013-4686(94)85172-7
  10. Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y., Electrochemical reduction of $CO_2$ at copper single crystal Cu (S)-[$n(111){\times}(111)$] and Cu (S)-[$n(110){\times}(100)$] electrodes. Journal of Electroanalytical Chemistry 2002, 533, (1), 135-143. https://doi.org/10.1016/S0022-0728(02)01081-1
  11. Shin, D. Y.; Jo, J. H.; Lee, J.-Y.; Lim, D.-H., Understanding mechanisms of carbon dioxide conversion into methane for designing enhanced catalysts from first-principles. Computational and Theoretical Chemistry, vol. 1083, 2016, pp.31-37. https://doi.org/10.1016/j.comptc.2016.03.011
  12. Hirunsit, P., Electroreduction of Carbon Dioxide to Methane on Copper, Copper-Silver, and Copper-Gold Catalysts: A DFT Study, THE JOURNAL OF PHYSICAL CHEMISTRY C , vol. 117, 2013, pp.8262-8268 https://doi.org/10.1021/jp400937e
  13. Yoshio Hori, Akira Murata and Ryutaro Takahashi, "Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution," Journal of the Chemical Society, Faraday Transactions 1, vol. 85(8), 1989, pp.2309-2326. https://doi.org/10.1039/f19898502309
  14. Yin-Jia Zhang, Vijay Sethuraman, Ronald Michalsky, and Andrew A. Peterson, Competition between $CO_2$ Reduction and H2 Evolution on Transition-Metal Electrocatalysts, ACS Catalysis, vol. 4(10), 2014, pp.3742-3748. https://doi.org/10.1021/cs5012298
  15. Kohn, W. and Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., vol. 140 (4A), 1965, pp.A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
  16. Kresse, G. and Hafner, J., Ab initio molecular dynamics for liquid metals, Physical Review B, vol. 47(1), 1993, pp.558-561. https://doi.org/10.1103/PhysRevB.47.558
  17. Kresse, G. and Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B, vol. 49(20), 1994, pp.14251-14269. https://doi.org/10.1103/PhysRevB.49.14251
  18. Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol. 54(16), 1996 pp.11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
  19. Kresse, G. and Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., vol. 6(1), 1996, pp.15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  20. Bloochl, P. E., Projector augmented-wave method, Physical Review B, vol. 50(24), 1994 pp.17953-17979. https://doi.org/10.1103/PhysRevB.50.17953
  21. Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol. 59 (3), 1999 pp.1758-1775.
  22. Perdew, J. P., Burke, K. and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Physical Review Letters, vol. 77, 1996, pp.3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  23. Monkhorst, H. J. and Pack, J. D., Special points for Brillouin-zone integrations, Physical Review B, vol. 13, 1976, pp.5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  24. Norskov, J. K., Kitchin, J. R., Bligaard, T., Jonsson, H., 2004, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, THE JOURNAL OF PHYSICAL CHEMISTRY B ,vol. 108, pp.17886-17892 https://doi.org/10.1021/jp047349j
  25. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science 2010, 3, (9), 1311-1315. https://doi.org/10.1039/c0ee00071j
  26. M. E. Straumanis and L. S. Yu, Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In $\alpha$ phase Acta Crystallographica, vol. A25. 1969, pp.676-682.
  27. A. Maeland and T. B. Flanagan, Lattice spacings of gold-palladium alloys, Canadian Journal of Physics, vol. 42(11), 1964, pp.2364-2366 https://doi.org/10.1139/p64-213
  28. Y. Waseda, K. Hirata and M. Ohtani, High-temperature thermal expansion of platinum, tantalum, molybdenum, and tungsten measured by x-ray diffraction, High Temperatures-High Pressures, vol. 7(2), 1975 pp.221-226.
  29. Annapaola Migani, Carmen Sousa and Francesc Illas, Chemisorption of atomic chlorine on metal surfaces and the interpretation of the induced work function changes, Surface Science, vol. 574, 2005, pp.297-305. https://doi.org/10.1016/j.susc.2004.10.041