HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS

Heui-Sang Son*, Hyun Woong Kim and Joon-Sik Park

Abstract

In this paper, we get a complete condition for a group homomorphism of a compact Lie group with an arbitrarily given left invariant Riemannian metric into another Lie group with a left invariant metric to be a harmonic map, and then obtain a necessary and sufficient condition for a group homomorphism of $(S U(2), g)$ with a left invariant metric g into the Heisenberg group $\left(H, h_{0}\right)$ to be a harmonic map.

1. Introduction

Harmonic maps of a compact Riemannian manifold (M, g) into another Riemannian manifold (N, h) are the extrema of the energy functional (cf. [7])

$$
E(\phi)=\frac{1}{2} \int_{M}\|d \phi\|^{2} v_{g},
$$

where $\|d \phi\|$ is the norm of the differential $d \phi$ of a mapping $\phi \in C^{\infty}(M, N)$ with respect to the metrics g, h.

In this paper, we construct group homomorphisms of a closed (compact and connected) Lie group G with a left invariant metric g into another Lie group with a left invariant metric h which are harmonic.

[^0]It is well known that every inner automorphism of a Lie group G into itself is both isomorphic and harmonic with respect to a bi-invariant Riemannian metric g_{0} on G.

However, we here deal with a group homomorphism between two Lie groups with arbitrarily given left invariant metrics.

First of all, we get a necessary and sufficient condition (cf. Proposition 2.1) for a group homomorphism ϕ of a compact Lie group G with a left invariant metric g into another Lie group H with a left invariant metric h to be a harmonic map.

And then, using this complete condition, we obtain a necessary and sufficient condition for a group homomorphism ϕ of $S U(2)(=G)$ with a left invariant metric g into the Heisenberg Lie group $\left(H, h_{0}\right)$ (cf. [4], [5]) to be a harmonic map.

2. Harmonic group homomorphisms

2.1. Harmonic maps

Let $(M, g),(N, h)$ be two Riemannian manifolds of dimension n, m, respectively. Let $\phi: M \rightarrow N$ be a smooth map and let $E:=\phi^{-1} T N$ be the induced bundle by ϕ over M of the tangent bundle $T N$ of N. We denote by $\Gamma(E)$, the space of all sections V of E, that is, $V \in \Gamma(E)$ implies that V is a map of M into E such that $V_{x} \in T_{\phi(x)} N$ for all $x \in M$. For $X \in \Gamma(T M)$, we define $\phi_{*} X \in \Gamma(E)$ by $\left(\phi_{*} X\right)_{x}:=\phi_{* x} X_{x} \in T_{\phi(x)} N$ $(x \in M)$, where $\phi_{* x}$ is the differential of ϕ at x. For $Y \in \Gamma(T N)$, we also define $\tilde{Y} \in \Gamma(E)$ by $\tilde{Y}_{x}:=Y_{\phi(x)}(x \in M)$.

We denote $\nabla,{ }^{N} \nabla$ the Levi-Civita connections of $(M, g),(N, h)$, respectively. Then we give the induced connection $\tilde{\nabla}$ on E (cf. [1], [2]) by

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} V\right)_{x}:=\left.\frac{d}{d t}{ }^{N} P_{\phi(\gamma(t))}^{-1} V_{\gamma(t)}\right|_{t=o} \quad(X \in \Gamma(T M), V \in \Gamma(E)), \tag{2.1}
\end{equation*}
$$

where $x \in M, \gamma(t)$ is a curve through x at $t=0$ whose tangent vector at x is X_{x}, and ${ }^{N} P_{\phi(\gamma(t))}: T_{\phi(x)} N \rightarrow T_{\phi(\gamma(t))} N$ is the parallel displacement
along a curve $\phi(\gamma(s))(0 \leq s \leq t)$ given by the Levi-Civita connection ${ }^{N} \nabla$ of $\left.(N, h)\right)$.

We define a tension field $\tau(\phi) \in \Gamma(E)$ of ϕ by

$$
\begin{equation*}
\tau(\phi):=\sum_{i=1}^{n}\left(\tilde{\nabla}_{\mathbf{e}_{i}} \phi_{*} \mathbf{e}_{i}-\phi_{*} \nabla_{\mathbf{e}_{i}} \mathbf{e}_{i}\right) \tag{2.2}
\end{equation*}
$$

where $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$ is a (locally defined) orthonormal frame field on M. We call ϕ to be a harmonic map if $\tau(\phi)=0$ on M.

2.2. Harmonic group homomorphisms

Let G be an n-dimensional closed (compact and connected) Lie group with an arbitrarily given left invariant metric g, and H an m-dimensional Lie group with a left invariant metric h. Let \mathfrak{g} (resp. \mathfrak{h}) be the Lie algebra of all left invariant vector fields on G (resp. H). Let $\phi: G \rightarrow H$ be a group homomorphism, $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$ (resp. $\left\{\mathbf{d}_{a}\right\}_{a=1}^{m}$) an orthonormal basis of $(\mathfrak{g}, g)($ resp. $(\mathfrak{h}, h))$. We use the following notations:

$$
\begin{align*}
& (d \phi)\left(\mathbf{e}_{i}\right)=: \sum_{a=1}^{m} \phi_{i}{ }^{a} \mathbf{d}_{a}, \\
& { }^{g} \nabla_{\mathbf{e}_{i}} \mathbf{e}_{j}=: D_{\mathbf{e}_{i}} \mathbf{e}_{j}=: \sum_{k=1}^{n} \alpha_{i j}^{k} \mathbf{e}_{k}, \tag{2.3}\\
& { }^{h} \nabla_{\mathbf{d}_{a}} \mathbf{d}_{b}=: \nabla_{\mathbf{d}_{a}} \mathbf{d}_{b}=: \sum_{c=1}^{m} \beta_{a b}^{c} \mathbf{d}_{c} .
\end{align*}
$$

Here $D($ resp. $\nabla)$ is the Levi-Civita connection on (G, g) (resp. (H, h)), and $d \phi\left(=\phi_{*}\right)$ is the differential of the group homomorphism ϕ. From (2.3) we obtain

$$
\begin{align*}
& \tilde{\nabla}_{\mathbf{e}_{i}} \phi_{*} \mathbf{e}_{i}=\sum_{a, b, c=1}^{m} \phi_{i}^{a} \phi_{i}^{b} \beta_{a b}^{c} \mathbf{d}_{c} \\
& \phi_{*}\left(D_{\mathbf{e}_{i}} \mathbf{e}_{i}\right)=\sum_{j=1}^{n} \sum_{a=1}^{m} \alpha_{i i}^{j} \phi_{j}^{a} \mathbf{d}_{a} \tag{2.4}
\end{align*}
$$

since $\alpha_{i j}{ }^{k}$ and $\beta_{a b}{ }^{c}$ are constants. By the help of (2.2), (2.4) and the definition of harmonic map, we obtain the following proposition.

Proposition 2.1. Let (G, g) be an n-dimensional closed Lie group with an arbitrarily given left invariant metric g on $G,(H, h)$ an m dimensional Lie group with an arbitrarily given left invariant metric h on H. Then a group homomorphism $\phi:(G, g) \rightarrow(H, h)$ is a harmonic map if and only if

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\sum_{a, b=1}^{m} \phi_{i}^{a} \phi_{i}^{b} \beta_{a b}^{c}-\sum_{j=1}^{n} \alpha_{i i}^{j} \phi_{j}^{c}\right)=0 \tag{2.5}
\end{equation*}
$$

for all $c=1,2, \ldots, m$.

2.3. Left invariant Riemannian metric on $S U(2)$

Let $\mathfrak{s u}(2)$ be the Lie algebra of $S U(2)$. The Killing form B of $\mathfrak{s u}(2)$ satisfies

$$
\begin{equation*}
B(X, Y)=4 \operatorname{Trace}(X Y) \quad(X, Y \in \mathfrak{s} u(2)) \tag{2.6}
\end{equation*}
$$

We define an inner product $<,>_{0}$ on $\mathfrak{s u}(2)$ by

$$
\begin{equation*}
<X, Y>_{0}:=-B(X, Y) \quad(X, Y \in \mathfrak{s u}(2)) \tag{2.7}
\end{equation*}
$$

Here and from now on, let g be an arbitrarily given left invariant Riemannian metric on $S U(2)$. The following lemma is known (cf. [1], [3], [6])

Lemma 2.2. Let g be a left invariant Riemannian metric on $S U(2)$. Let $<,>$ be an inner product on $\mathfrak{s u}(2)$ defined by $<X, Y>:=$ $g_{e}\left(X_{e}, Y_{e}\right)$, where $X, Y \in \mathfrak{s u}(2)$ and e is the identity matrix of $S U(2)$. Then there exists an orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ of $\mathfrak{s u}(2)$ with respect to $<,>_{0}(=-B)$ such that

$$
\begin{array}{ll}
{\left[X_{1}, X_{2}\right]=(1 / \sqrt{2}) X_{3},} & {\left[X_{2}, X_{3}\right]=(1 / \sqrt{2}) X_{1}} \\
{\left[X_{3}, X_{1}\right]=(1 / \sqrt{2}) X_{2},} & <X_{i}, X_{j}>=\delta_{i j} a_{i}^{2} \tag{2.8}
\end{array}
$$

where $a_{i}(i=1,2,3)$ are positive constants determined by the given left invariant Riemannian metric g on $S U(2)$.

2.4. Heisenberg Riemannian Lie group $\left(H, h_{0}\right)$

Let H be the Heisenberg group (cf. [4], [5]), that is,

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & a_{12} & a_{13} \tag{2.9}\\
0 & 1 & a_{23} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a_{12}, a_{23}, a_{13} \in \mathbb{R}\right\}
$$

Denote by x, y, z coordinates on H, say for $A \in H, x(A)=a_{12}$, $y(A)=a_{23}, z(A)=a_{13}$. If L_{B} is the left translation by an element $B \in H$, we have
(2.10) $\quad L_{B}^{*} d x=d x, \quad L_{B}^{*} d y=d y, \quad L_{B}^{*}(d z-x d y)=d z-x d y$.

On H, the vector fields

$$
\begin{equation*}
\mathbf{d}_{1}:=\frac{\partial}{\partial x}, \quad \mathbf{d}_{2}:=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, \quad \mathbf{d}_{3}:=\frac{\partial}{\partial z} \tag{2.11}
\end{equation*}
$$

are dual to $d x, d y, d z-x d y$, and are left invariant. Moreover, $\left\{\mathbf{d}_{a}\right\}_{a=1}^{3}$ is orthonormal with respect to the left invariant metric h_{0} on H given by

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}+(d z-x d y)^{2} \tag{2.12}
\end{equation*}
$$

The Riemannian manifold $\left(H, h_{0}\right)$ is referred to as the Heisenberg Riemannian Lie group.

2.5. Harmonic group homomorphisms of $(S U(2), g)$ into $\left(H, h_{0}\right)$

We retain the notations as in subsections 2.2, 2.3 and 2.4. In general, the Riemannian connection ∇ on a Riemannian manifold (M, g) is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(X, Z)-Z g(X, Y) \\
& +g([X, Y], Z)+g([Z, X], Y) \tag{2.13}\\
& -g([Y, Z], X) \quad(X, Y, Z \in \mathfrak{X}(M)) .
\end{align*}
$$

We fix an orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ of $\mathfrak{s u}(2)$ with respect to $<,>_{0}$ satisfying (2.8) in Lemma 2.2 and denote by $g_{\left(a_{1}, a_{2}, a_{3}\right)}$ the left invariant Riemannian metric on $S U(2)$ which is determined by positive
real numbers a_{1}, a_{2}, a_{3} in Lemma 2.2. Moreover, we normalize left invariant Riemannian metrics on $S U(2)$ by putting $a_{3}=1$. We denote by $g_{\left(a_{1}, a_{2}, 1\right)}$, or simply by $g_{\left(a_{1}, a_{2}\right)}$, the left invariant Riemannian metric which is determined by positive real numbers $a_{3}=1, a_{1}, a_{2}$.

For the orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ of $\mathfrak{s u}(2)$ with respect to $-B=:<,>_{0}$ in Lemma 2.2, if we put

$$
\mathbf{e}_{1}:=\frac{1}{a_{1}} X_{1}, \quad \mathbf{e}_{2}:=\frac{1}{a_{2}} X_{2}, \quad \mathbf{e}_{3}:=X_{3},
$$

then $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is an orthonormal frame basis of $\left(S U(2), g_{\left(a_{1}, a_{2}\right)}\right)$. From (2.8), we have

$$
\begin{equation*}
\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=\frac{1}{\sqrt{2} a_{1} a_{2}} \mathbf{e}_{3}, \quad\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=\frac{a_{1}}{\sqrt{2} a_{2}} \mathbf{e}_{1}, \quad\left[\mathbf{e}_{3}, \mathbf{e}_{1}\right]=\frac{a_{2}}{\sqrt{2} a_{1}} \mathbf{e}_{2} . \tag{2.14}
\end{equation*}
$$

By virtue of (2.13) and (2.14), we get

$$
\begin{array}{ll}
D_{\mathbf{e}_{1}} \mathbf{e}_{2}=\frac{1-\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}}{2 \sqrt{2} a_{1} a_{2}} \mathbf{e}_{3}, & D_{\mathbf{e}_{2}} \mathbf{e}_{3}=\frac{1+\left(a_{1}\right)^{2}-\left(a_{2}\right)^{2}}{2 \sqrt{2} a_{1} a_{2}} \mathbf{e}_{1}, \tag{2.15}\\
D_{\mathbf{e}_{3}} \mathbf{e}_{1}=\frac{-1+\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}}{2 \sqrt{2} a_{1} a_{2}} \mathbf{e}_{2}, & D_{\mathbf{e}_{i}} \mathbf{e}_{i}=0 \quad(i=1,2,3) .
\end{array}
$$

Using (2.3), (2.14) and (2.15), we have

$$
\begin{align*}
& \alpha_{12}^{3}=\frac{1-\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}}{2 \sqrt{2} a_{1} a_{2}}, \\
& \alpha_{23}^{1}=-\alpha_{21}^{3}=\frac{1+\left(a_{1}\right)^{2}-\left(a_{2}\right)^{2}}{2 \sqrt{2} a_{1} a_{2}}, \\
& \alpha_{31}^{2}=-\alpha_{32}^{1}=\frac{-1+\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}}{2 \sqrt{2} a_{1} a_{2}}, \tag{2.16}\\
& \alpha_{13}^{2}=\frac{-1-\left(a_{1}\right)^{2}-\left(a_{2}\right)^{2}}{2 \sqrt{2} a_{1} a_{2}}, \\
& \alpha_{i j}^{k}=0 \text { otherwise. }
\end{align*}
$$

Moreover, by virtue of (2.11) and (2.13), we get

$$
\begin{align*}
& {\left[\mathbf{d}_{1}, \mathbf{d}_{2}\right]=\mathbf{d}_{3}, \quad\left[\mathbf{d}_{2}, \mathbf{d}_{3}\right]=\left[\mathbf{d}_{3}, \mathbf{d}_{1}\right]=0,} \\
& \nabla_{\mathbf{d}_{i}} \mathbf{d}_{i}=0 \quad(i=1,2,3), \quad \nabla_{\mathbf{d}_{1}} \mathbf{d}_{2}=-\nabla_{\mathbf{d}_{2}} \mathbf{d}_{1}=\frac{1}{2} \mathbf{d}_{3}, \tag{2.17}\\
& \nabla_{\mathbf{d}_{2}} \mathbf{d}_{3}=\nabla_{\mathbf{d}_{3}} \mathbf{d}_{2}=\frac{1}{2} \mathbf{d}_{1}, \quad \nabla_{\mathbf{d}_{3}} \mathbf{d}_{1}=\nabla_{\mathbf{d}_{1}} \mathbf{d}_{3}=-\frac{1}{2} \mathbf{d}_{2} .
\end{align*}
$$

From (2.3) and (2.17), we have

$$
\begin{align*}
& \beta_{12}^{3}=-\beta_{21}^{3}=\frac{1}{2}, \quad \beta_{23}^{1}=\beta_{32}^{1}=\frac{1}{2} \\
& \beta_{31}^{2}=\beta_{13}^{2}=-\frac{1}{2}, \quad \beta_{b c}^{a}=0 \text { otherwise. } \tag{2.18}
\end{align*}
$$

By virtue of Proposition 2.1, (2.16) and (2.18), we obtain a group homomorphism $\phi:\left(S U(2), g_{\left(a_{1}, a_{2}\right)}\right) \rightarrow\left(H, h_{0}\right)$ is a harmonic map if and only if

$$
\sum_{i=1}^{3} \phi_{i}^{2} \phi_{i}^{3}=0 \text { and } \sum_{i=1}^{3} \phi_{i}^{3} \phi_{i}^{1}=0
$$

Hence, we have the following theorem.
Theorem 2.3. A group homomorphism ϕ of $\left(S U(2), g_{\left(a_{1}, a_{2}\right)}\right)$ into the Heisenberg group $\left(H, h_{0}\right)$ is a harmonic map if and only if

$$
\sum_{i=1}^{3} h_{0}\left(\phi_{*} \mathbf{e}_{i}, \mathbf{d}_{2}\right) \cdot h_{0}\left(\phi_{*} \mathbf{e}_{i}, \mathbf{d}_{3}\right)=0
$$

and

$$
\sum_{i=1}^{3} h_{0}\left(\phi_{*} \mathbf{e}_{i}, \mathbf{d}_{3}\right) \cdot h_{0}\left(\phi_{*} \mathbf{e}_{i}, \mathbf{d}_{1}\right)=0
$$

References

[1] H. W. Kim, Y.-S. Pyo and H.-J. Shin, Ricci and scalar curvatures on $\operatorname{SU}(3)$, Honam Math. J., 34(2) 2012), 231-239.
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Pub., 1963.
[3] J.-S. Park, Yang-Mills connections in orthonormal frame bundles over $\operatorname{SU}(2)$, Tsukuba J. Math., 18 (1994), 203-206.
[4] J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Int. Inform. Sci., 11 (2005), 31-34.
[5] J.-S. Park and W. T. Oh, The Abbena-Thurston manifold as a critical point, Can. Math. Bull., 39 (1996), 352-359.
[6] K. Sugahara, The sectional curvature and the diameter estimate for the left invariant metrics on $S U(2, \mathbb{C})$ and $S O(3, \mathbb{R})$, Math. Japonica, 26 (1981), 153-159.
[7] H. Urakawa, Calculus of variations and harmonic Maps, Amer. Math. Soc., Providence, Rhode Island, 1993.

Heui-Sang Son
Department of Applied Mathematics,
Pukyong National University,
Pusan 48513, Korea
E-mail: sonheuisang@hanmail.net

Hyun Woong Kim
Department of Applied Mathematics, Pukyong National University,
Pusan 48513, Korea
E-mail: 0127woong@hanamil.net
Joon-Sik Park
Department of Mathematics,
Pusan University of Foreign Studies,
Busan 46234, Korea
E-mail: iohpark@pufs.ac.kr

[^0]: Received March 16, 2015. Accepted December 16, 2015.
 2010 Mathematics Subject Classification. 53C05, 53B05, 55R10, 55R65.
 Key words and phrases. Lie group, group homomorphism, left invariant metric, Heisenberg group.
 *Corresponding author

