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HARMONIC HOMOMORPHISMS BETWEEN TWO LIE

GROUPS

Heui-Sang Son∗, Hyun Woong Kim and Joon-Sik Park

Abstract. In this paper, we get a complete condition for a group

homomorphism of a compact Lie group with an arbitrarily given

left invariant Riemannian metric into another Lie group with a left

invariant metric to be a harmonic map, and then obtain a necessary

and sufficient condition for a group homomorphism of (SU(2), g)

with a left invariant metric g into the Heisenberg group (H,h0) to

be a harmonic map.

1. Introduction

Harmonic maps of a compact Riemannian manifold (M, g) into an-

other Riemannian manifold (N,h) are the extrema of the energy func-

tional (cf. [7])

E(φ) =
1

2

∫

M
‖dφ‖2vg,

where ‖dφ‖ is the norm of the differential dφ of a mapping φ ∈ C∞(M,N)

with respect to the metrics g, h.

In this paper, we construct group homomorphisms of a closed (com-

pact and connected) Lie group G with a left invariant metric g into

another Lie group with a left invariant metric h which are harmonic.
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It is well known that every inner automorphism of a Lie group G into

itself is both isomorphic and harmonic with respect to a bi-invariant

Riemannian metric g0 on G.

However, we here deal with a group homomorphism between two Lie

groups with arbitrarily given left invariant metrics.

First of all, we get a necessary and sufficient condition (cf. Proposi-

tion 2.1) for a group homomorphism φ of a compact Lie group G with

a left invariant metric g into another Lie group H with a left invariant

metric h to be a harmonic map.

And then, using this complete condition, we obtain a necessary and

sufficient condition for a group homomorphism φ of SU(2) (= G) with

a left invariant metric g into the Heisenberg Lie group (H,h0) (cf. [4],

[5]) to be a harmonic map.

2. Harmonic group homomorphisms

2.1. Harmonic maps

Let (M, g), (N,h) be two Riemannian manifolds of dimension n, m,

respectively. Let φ : M → N be a smooth map and let E := φ−1TN

be the induced bundle by φ over M of the tangent bundle TN of N .

We denote by Γ(E), the space of all sections V of E, that is, V ∈ Γ(E)

implies that V is a map ofM into E such that Vx ∈ Tφ(x)N for all x ∈ M .

For X ∈ Γ(TM), we define φ∗X ∈ Γ(E) by (φ∗X)x := φ∗xXx ∈ Tφ(x)N

(x ∈ M), where φ∗x is the differential of φ at x. For Y ∈ Γ(TN), we

also define Ỹ ∈ Γ(E) by Ỹx := Yφ(x) (x ∈ M).

We denote ∇, N∇ the Levi-Civita connections of (M, g), (N,h), re-

spectively. Then we give the induced connection ∇̃ on E (cf. [1], [2])

by

(2.1) (∇̃XV )x :=
d

dt
NP −1

φ(γ(t)) Vγ(t)|t=o (X ∈ Γ(TM), V ∈ Γ(E)),

where x ∈ M , γ(t) is a curve through x at t = 0 whose tangent vector at

x is Xx, and
NPφ(γ(t)) : Tφ(x)N → Tφ(γ(t))N is the parallel displacement
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along a curve φ(γ(s)) (0 ≤ s ≤ t) given by the Levi-Civita connection
N∇ of (N,h)).

We define a tension field τ(φ) ∈ Γ(E) of φ by

(2.2) τ(φ) :=
n∑

i=1

(
∇̃eiφ∗ei − φ∗∇eiei

)
,

where {ei}ni=1 is a (locally defined) orthonormal frame field on M . We

call φ to be a harmonic map if τ(φ) = 0 on M .

2.2. Harmonic group homomorphisms

Let G be an n-dimensional closed (compact and connected) Lie group

with an arbitrarily given left invariant metric g, andH anm-dimensional

Lie group with a left invariant metric h. Let g (resp. h) be the Lie algebra

of all left invariant vector fields on G (resp. H). Let φ : G → H be a

group homomorphism, {ei}ni=1 (resp. {da}ma=1) an orthonormal basis of

(g, g) (resp. (h, h)). We use the following notations:

(2.3)

(dφ)(ei) =:
m∑

a=1

φi
a da,

g∇eiej =: Deiej =:
n∑

k=1

αij
k ek,

h∇dadb =: ∇dadb =:
m∑

c=1

βab
c dc.

Here D (resp. ∇) is the Levi-Civita connection on (G, g) (resp. (H,h)),

and dφ (= φ∗) is the differential of the group homomorphism φ. From

(2.3) we obtain

(2.4)

∇̃eiφ∗ei =
m∑

a,b,c=1

φi
a φi

b βab
c dc

φ∗(Deiei) =
n∑

j=1

m∑

a=1

αii
j φj

a da

since αij
k and βab

c are constants. By the help of (2.2), (2.4) and the

definition of harmonic map, we obtain the following proposition.
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Proposition 2.1. Let (G, g) be an n-dimensional closed Lie group

with an arbitrarily given left invariant metric g on G, (H,h) an m-

dimensional Lie group with an arbitrarily given left invariant metric h

on H. Then a group homomorphism φ : (G, g) → (H,h) is a harmonic

map if and only if

(2.5)
n∑

i=1




m∑

a,b=1

φi
a φi

b βab
c −

n∑

j=1

αii
j φj

c


 = 0

for all c = 1, 2, . . . ,m.

2.3. Left invariant Riemannian metric on SU(2)

Let su(2) be the Lie algebra of SU(2). The Killing form B of su(2)

satisfies

(2.6) B(X,Y ) = 4 Trace(XY ) (X,Y ∈ su(2)).

We define an inner product < , >0 on su(2) by

(2.7) < X,Y >0:= −B(X,Y ) (X,Y ∈ su(2)).

Here and from now on, let g be an arbitrarily given left invariant Rie-

mannian metric on SU(2). The following lemma is known (cf. [1], [3],

[6])

Lemma 2.2. Let g be a left invariant Riemannian metric on SU(2).

Let < , > be an inner product on su(2) defined by < X,Y > :=

ge(Xe, Ye), where X,Y ∈ su(2) and e is the identity matrix of SU(2).

Then there exists an orthonormal basis {X1, X2, X3} of su(2) with re-

spect to < , >0 (= −B) such that

(2.8)
[X1, X2] = (1/

√
2)X3, [X2, X3] = (1/

√
2)X1,

[X3, X1] = (1/
√
2)X2, < Xi, Xj >= δijai

2,

where ai (i = 1, 2, 3) are positive constants determined by the given left

invariant Riemannian metric g on SU(2).
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2.4. Heisenberg Riemannian Lie group (H,h0)

Let H be the Heisenberg group (cf. [4], [5]), that is,

(2.9) H =







1 a12 a13

0 1 a23

0 0 1


 | a12, a23, a13 ∈ R





.

Denote by x, y, z coordinates on H, say for A ∈ H, x(A) = a12,

y(A) = a23, z(A) = a13. If LB is the left translation by an element

B ∈ H, we have

(2.10) L∗
B dx = dx, L∗

B dy = dy, L∗
B (dz − xdy) = dz − xdy.

On H, the vector fields

(2.11) d1 :=
∂

∂x
, d2 :=

∂

∂y
+ x

∂

∂z
, d3 :=

∂

∂z

are dual to dx, dy, dz− xdy, and are left invariant. Moreover, {da}3a=1

is orthonormal with respect to the left invariant metric h0 on H given

by

(2.12) ds2 = dx2 + dy2 + (dz − xdy)2.

The Riemannian manifold (H,h0) is referred to as the Heisenberg Rie-

mannian Lie group.

2.5. Harmonic group homomorphisms of (SU(2), g) into (H,h0)

We retain the notations as in subsections 2.2, 2.3 and 2.4. In general,

the Riemannian connection ∇ on a Riemannian manifold (M, g) is given

by

(2.13)

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

+ g([X,Y ], Z) + g([Z,X], Y )

− g([Y,Z], X) (X,Y, Z ∈ X(M)).

We fix an orthonormal basis {X1, X2, X3} of su(2) with respect to

< , >0 satisfying (2.8) in Lemma 2.2 and denote by g(a1,a2,a3) the left

invariant Riemannian metric on SU(2) which is determined by positive
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real numbers a1, a2, a3 in Lemma 2.2. Moreover, we normalize left in-

variant Riemannian metrics on SU(2) by putting a3 = 1. We denote

by g(a1,a2,1), or simply by g(a1,a2), the left invariant Riemannian metric

which is determined by positive real numbers a3 = 1, a1, a2.

For the orthonormal basis {X1, X2, X3} of su(2) with respect to

−B =:< , >0 in Lemma 2.2, if we put

e1 :=
1

a1
X1, e2 :=

1

a2
X2, e3 := X3,

then {e1, e2, e3} is an orthonormal frame basis of (SU(2), g(a1,a2)). From

(2.8), we have

(2.14) [e1, e2] =
1√

2 a1a2
e3, [e2, e3] =

a1√
2 a2

e1, [e3, e1] =
a2√
2 a1

e2.

By virtue of (2.13) and (2.14), we get

(2.15)

De1e2 =
1− (a1)

2 + (a2)
2

2
√
2 a1a2

e3, De2e3 =
1 + (a1)

2 − (a2)
2

2
√
2 a1a2

e1,

De3e1 =
−1 + (a1)

2 + (a2)
2

2
√
2 a1a2

e2, Deiei = 0 (i = 1, 2, 3).

Using (2.3), (2.14) and (2.15), we have

(2.16)

α12
3 =

1− (a1)
2 + (a2)

2

2
√
2 a1a2

,

α23
1 = −α21

3 =
1 + (a1)

2 − (a2)
2

2
√
2 a1a2

,

α31
2 = −α32

1 =
−1 + (a1)

2 + (a2)
2

2
√
2 a1a2

,

α13
2 =

−1− (a1)
2 − (a2)

2

2
√
2 a1a2

,

αij
k = 0 otherwise.

Moreover, by virtue of (2.11) and (2.13), we get

(2.17)

[d1,d2] = d3, [d2,d3] = [d3,d1] = 0,

∇didi = 0 (i = 1, 2, 3), ∇d1d2 = −∇d2d1 =
1

2
d3,

∇d2d3 = ∇d3d2 =
1

2
d1, ∇d3d1 = ∇d1d3 = −1

2
d2.
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From (2.3) and (2.17), we have

(2.18)
β12

3 = −β21
3 =

1

2
, β23

1 = β32
1 =

1

2
,

β31
2 = β13

2 = −1

2
, βbc

a = 0 otherwise.

By virtue of Proposition 2.1, (2.16) and (2.18), we obtain a group ho-

momorphism φ : (SU(2), g(a1,a2)) → (H,h0) is a harmonic map if and

only if
3∑

i=1

φi
2φi

3 = 0 and
3∑

i=1

φi
3φi

1 = 0.

Hence, we have the following theorem.

Theorem 2.3. A group homomorphism φ of (SU(2), g(a1,a2)) into

the Heisenberg group (H,h0) is a harmonic map if and only if

3∑

i=1

h0(φ∗ei,d2) · h0(φ∗ei,d3) = 0

and
3∑

i=1

h0(φ∗ei,d3) · h0(φ∗ei,d1) = 0.
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