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VOLUME OF GRAPH POLYTOPES FOR THE

PATH-STAR TYPE GRAPHS

Hyeong-Kwan Ju∗ and Soo-Jeong Seo

Abstract. The aim of this work is to compute the volume of the
graph polytope associated with various type of finite simple graphs
composed of paths and stars. Recurrence relations are obtained
using the recursive volume formula (RVF) which was introduced in
Lee and Ju ([3]). We also discussed the relationship between the
volume of the graph polytopes and the number of linear extensions
of the associated posets for given bipartite graphs.

1. Introduction

Let G = (V,E) be a simple graph with V = [k]. Then the graph
polytope P (G) associated with the graph G is defined as follows:

P (G) := {(x1, x2, . . . , xk) ∈ [0, 1]k|ij ∈ E ⇒ xi + xj ≤ 1}.
Bóna et al.[1] discussed Ehrhart polynomials of the Ehrhart series for the
polytope P (G) of the bipartite graph G. We define the kernel function
K : [0, 1]2 → R by the following:

K(s, t) :=

{
1, s+ t ≤ 1
0, elsewhere.

Then the volume vol(P (G)) of the polytope P (G) can be expressed in
terms of the products of the kernel functions as follows:

vol(P (G)) =

∫

Qk

H(x1, x2, . . . , xk)dx,
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where Qk = [0, 1]k is the k-dimensional unit hypercube,

H(x1, x2, . . . , xk) =
∏

ij∈E
K(xi, xj), and dx = dx1dx2 · · · dxk.

Our main interest is to obtain the volume formula of the finite simple
graphs. With the help of the recursive volume formula (will be intro-
duced next section) we can get the recurrence relations on the volume
of the graph polytope for any finite simple graph (even including non-
bipartite graphs). In Section 2 we discuss about the volumes for paths
and star graphs briefly, and introduce the recursive volume formula.
Volumes of polytopes for several path-star type graphs are obtained us-
ing the volume formula related with the kernel function in Section 3.
We also obtain recursive volume formula for the corresponding graph
polytopes there. In Sections 4 and 5 we introduce posets and linear
extensions, and explain the relationship between volumes of graph poly-
topes and number of linear extensions for bipartite graphs. In the last
section, concluding remarks and further open questions were suggested.

2. Volumes for Paths and Star Graphs

A star graph Sn = (V,E) is a graph with V = {0} ∪ [n], E = {0k |
k ∈ [n]}. Then the volume of the cross section is

vol(P (Sn)∩{x0 = t}) =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

n∏

i=1

K(xi, t)dx1 · · · dxn−1dxn = (1−t)n.

Hence, we can get the volume of P (Sn) immediately, and it is 1
n+1 . A

path is the graph Pn = ([n], E) where E = {i(i + 1)|1 ≤ i ≤ n − 1}. In
this case, we obtain the volume of the cross section as follows:

vol(P (Ln) ∩ {xn = t}) =
∫ 1−t

xn−1=0
· · ·

∫ 1−x3

x2=0

∫ 1−x2

x1=0
dx1dx2 · · · dxn−1.

Let f0(t) := 1, fn(t) := vol(P (Ln+1) ∩ {xn+1 = t}). The following result
is directly from [2].

Lemma 2.1. Generating function of fn(t) is

F (t, x) :=
∑

n≥0

fn(t)x
n = (cos(tx) + sin(1− tx)) secx,

and the volume of P (Ln) is

vol(P (Pn)) =
En

n!
,
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where En is the Euler’s up-down number(A000111 in OEIS[4]).

Lemma 2.2. fn(t) can be expressed in terms of Euler’s up-down
numbers as follows:

fn(t) =





∑
k≥0

(−1)kt2kEn−2k

(2k)!(n−2k)! n is even,
∑

k≥0
(−1)k(1−t)2k+1En−2k−1

(2k+1)!(n−2k−1)! n is odd.

Proof.

∑

n≥0

fn(t)x
n = (cos tx+ sin(1− t)x) secx

=
(∑

k≥0

(−1)k
(tx)2k

(2k)!
+

∑

k≥0

(−1)k
((1− t)x)2k+1

(2k + 1)!

)(∑

`≥0

E2`

(2`)!
x2`

)

=
∑

k≥0

∑

`≥0

((−1)kt2k

(2k)!
· E2`

(2`)!

)
x2k+2`

+
∑

k≥0

∑

`≥0

((−1)k(1− t)2k+1

(2k + 1)!
· E2`

(2`)!

)
x2k+2`+1

Theorem 2.3. (RVF, [3]) Let G = (V,E) be a graph with the vertex
set V = [n] and having no isolated vertex. Then

vol(G) =
n∑

i=1

vol(G− i)

2n

where G − i is the graph with the vertex set [n]\{i} and, accordingly,
with the inherited edge set in the original edge set E.

3. Volumes for Path-Star Type Graphs

Path-Star type graphs are those graphs where star graphs are at-
tached at some vertices of a path. Here we consider only three kinds of
them given in the following subsections.
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3.1. Path-Star Graphs

Let PS(n,m) = (V,E) be a graph with V = {0, 1, 2, . . . , n, 1′, 2′, . . . ,m′}
and E = {i(i+1)|0 ≤ i ≤ n−1}⋃{ni′|1 ≤ i ≤ m}. The graph PS(m,n)
is called a path-star graph of order n and m (see Figure 3.1) and the
volume of PS(m,n) is denoted by a(n,m). Then,

a(n,m) := vol(P (PS(n,m))) =

∫ 1

0
fn(t)(1− t)mdt.

Remind that fn(t) := vol(P (Ln+1) ∩ {xn = t}). In other words, fn(t) is
the (n-dimensional) volume of the cross-section of the polytope P (Ln+1)
with an hyperplane xn = t. (Note that the subscript i in the xi runs from
0, not 1.)

Figure 1

If we apply Theorem 2.3 to the path-star graph PS(n,m), we obtain
the recursive formula on a(n,m) in the next corollary.

Corollary 3.1. The volume sequence a(n,m) for the path-star graphs
satisfies the following recursive formula:

a(n,m) =
1

2(n+m+ 1)

(
a(n,m−1)m+

En

n!
+

n−1∑

k=0

a(k,m)
En−k−1

(n− k − 1)!

)
.

Proof. By Theorem 2.3 we have the formula

a(n,m) =
1

2(n+m+ 1)

(
a(n,m−1)m+vol(P (Ln))+

n−1∑

k=0

a(k,m)vol(P (Ln−k−1))
)
.
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Since vol(P (Ln)) =
En
n! we get the desired formula.

Theorem 3.2. The volume sequence a(n,m) for the path-star graphs
also satisfies the following formula: If n is odd, then

a(n,m) =

n−1
2∑

k≥0

(−1)kEn−2k−1

(2k + 1)!(n− 2k − 1)!(2k +m+ 2)
,

and if n is even, then

a(n,m) =

n
2∑

k≥0

(−1)kEn−2k

(2k)!(n− 2k)!(2k +m+ 1)

1(
2k+m
2k

) .

Proof. From Lemma 2.2 we obtain the following results. For the odd
case n = 2q + 1,

a(2q + 1,m) =

∫ 1

0

∑

k≥0

(−1)k(1− t)2k+1E2(q−k)

(2k + 1)!(2q − 2k)!
(1− t)mdt

=
∑

k≥0

(−1)kE2(q−k)

(2k + 1)!(2q − 2k)!

∫ 1

0
(1− t)2k+1+mdt

=
∑

k≥0

(−1)kE2(q−k)

(2k + 1)!(2q − 2k)!(2k + 2 +m)
.

For the even case n = 2q,

a(2q,m) =

∫ 1

0

∑

k≥0

(−1)kt2kE2(q−k)

(2k)!(2q − 2k)!
(1− t)mdt

=
∑

k≥0

(−1)kE2(q−k)

(2k)!(2q − 2k)!

∫ 1

0
t2k(1− t)mdt

=
∑

k≥0

(−1)kE2(q−k)

(2k)!(2q − 2k)!
B(2k + 1,m+ 1)

=
∑

k≥0

(−1)kE2q−2k

(2k)!(2q − 2k)!(2k +m+ 1)

1(
2k+m
2k

) ,

where B(p, q) is the beta function defined by

B(p, q) :=

∫ 1

0
tp−1(1− t)q−1dt.

(See [5] about this.)
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Next, we consider the bivariate generating function on a(n,m). Let

F (x, y) :=
∑

m≥0

∑

n≥0

a(n,m)xnym.

Then, we get the next corollary.

Corollary 3.3.

F (x, y) =

∫ 1

0

cos tx+ sin (1− t)x

1− (1− t)y
secxdt.

Proof.

F (x, y) =
∑

n≥0

∑

m≥0

a(n,m)xnym

=
∑

n≥0

∑

m≥0

∫ 1

0
fn(t)(1− t)mdtxnym

=

∫ 1

0

∑

m≥0

(cos tx+ sin (1− t)x) secx · (1− t)mymdt

(by Lemma 2.1)

=

∫ 1

0
(cos tx+ sin (1− t)x) secx

∑

m≥0

(1− t)mymdt

=

∫ 1

0

cos tx+ sin (1− t)x

1− (1− t)y
secxdt.

3.2. Double Star Graphs

Next, we consider the case when two graph are connected via a single
edge (called a bridge). Let G1 = (V1, E1) and G2 = (V2, E2) be graphs
with V1 = {x1, . . . , xm, x} and V2 = {y1, . . . , yn, y}. Then we define
G = G1 ◦G2 by G = (V,E) with V = V1 ∪ V2 and E = E1 ∪E2 ∪ {xy}.
Then
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vol(P (G1)) =

∫ 1

0
ϕ1(x)dx =

∫

Qm+1

H1(x1, x2, . . . , xm, x)dx1dx2 · · · dxmdx

vol(P (G2)) =

∫ 1

0
ϕ2(y)dy =

∫

Qn+1

H2(y1, y2, . . . , yn, y)dy1dy2 · · · dyndy

vol(P (G)) =

∫

Qm+n+2

H(x1, . . . , x, y1, . . . , y)dx1 · · · dxdy1 · · · dy

=

∫ ∫

[0,1]2
ϕ1(x)ϕ2(y)K(x, y)dxdy

=

∫ 1

0
[

∫ 1−y

0
ϕ1(x)dx]ϕ2(y)dy

Figure 2

A double star graph is the graph DS(n,m) where two star graphs (Sn

and Sm) are joined by a single edge which connects both center ver-
tices. In other words, DS(n,m) := Sn ◦ Sm. Remind that vol(P (Sn)) =∫ 1
0 (1− x)ndx and vol(P (Sm)) =

∫ 1
0 (1− y)mdy.

Theorem 3.4. The volume of the graph polytope for the double star
graph DS(n,m) is

vol(P (DS(n,m))) =
1

(m+ 1)(n+ 1)
(1− 1(

m+n+2
m+1

)).
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Figure 3

Proof.

vol(P (DS(n,m))) =

∫ 1

0
[

∫ 1−y

0
(1− x)ndx](1− y)mdy

=

∫ 1

0
[− 1

n+ 1
(1− x)n+1]1−y

0 (1− y)mdy

=

∫ 1

0
(− 1

n+ 1
yn+1 +

1

n+ 1
)(1− y)mdy

=
1

n+ 1

∫ 1

0
(1− yn+1)(1− y)mdy

=
1

n+ 1
{
∫ 1

0
(1− y)mdy −

∫ 1

0
yn+1(1− y)mdy}

=
1

(m+ 1)(n+ 1)
− 1

n+ 1
B(n+ 2,m+ 1)

=
1

(m+ 1)(n+ 1)
(1− 1(

m+n+2
m+1

))

Remark that vol(P (DS(n,m))) = vol(P (DS(m,n))).

3.3. Star-Path-Star Graphs

A star-path-star graph is the graph SPS(l, n,m) where two star
graphs (Sl and Sm) are joined by a path (Ln) which connects both
center vertices. (See Figures 4 and 5.)
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Figure 4

Figure 5

Theorem 3.5. The volume of the graph polytope for a star-path-star
graph SPS(l, n,m) is the following. If n is odd,

vol(P (SPS(`, n,m))) =
1

`+ 1

[ n−1
2∑

k≥0

(−1)kEn−2k−1

(2k + 1)!(n− 2k − 1)!(2k +m+ 2)

−
∑

k≥0

(−1)kEn−2k−1(`+ 1)!(2k +m+ 1)!

(2k + 1)!(n− 2k − 1)!(`+ 2k +m+ 3)!

]
,
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and if n is even,

vol(P (SPS(`, n,m))) =
1

`+ 1

[ n
2∑

k≥0

(−1)kEn−2k

(2k)!(n− 2k)!(2k +m+ 1)
· 1(

2k+m
2k

)

−
∑

k≥0

(−1)kEn−2k(`+ 2k + 1)!m!

(2k)!(n− 2k)!(`+ 2k +m+ 2)!

]
.

Proof. The proof is immediate if we use the formulas vol(P (Sl)) =∫ 1
0 (1− x)ldx and vol(P (PS(n,m)) =

∫ 1
0 fn(y)(1− y)ldy.

4. Posets and Linear Extensions([7])

A poset, or partially ordered set is an ordered pair P = (X,≤) where
X is a nonempty set and ≤ is a relation on X satisfying reflexivity,
antisymmetry and transitivity. A chain of a poset P = (X,≤) is a
nonempty subset of X containing pairwise comparable elements. The
height of a poset is the maximum size of chains in the poset. Every
bipartite graph can be regarded as a poset of height 2. A linear extension
of a poset is a linear order (or total order) that is comparable with the
partial order in the poset.

Example 4.1. A zigzag poset (or called a fence) is an well-known
example of the posets, where the order relations form a path with alter-
nating orientations:

x1 < x2 > x3 < x4 > x5 < · · · > (<)xn.

A linear extension of a zigzag poset is called an alternating permutation.
The number of different linear extensions in this poset is well-known
and is the Euler zigzag number or up/down number(sequence A000111
in OEIS [4]). The sequence is as follows:

1, 1, 1, 2, 5, 16, 61, 272, 1385, · · · .
For the case n = 4,

x1x3x2x4, x1x3x4x2, x3x1x2x4, x3x1x4x2, x3x4x1x2

are all of the linear extensions.
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5. Relationship between Volumes of the Graph Polytopes
and Number of Linear Extensions

By Theorem 2.3, for a given bipartite graph we can obtain a new
formula to get the number of linear extensions of the poset correspond-
ing to the given bipartite graph. In order to prove this we need some
preliminary knowledge.

Let G = ([m] t ([n]\[m]), E) be a bipartite graph, Q = [0, 1]n. Then
we can regard it as a poset like in the following. Consider n−vector

(x1, x2, . . . , xm, ym+1, . . . , yn) ∈ Q.

We consider the inequalities xi + yj ≤ 1 whenever ij ∈ E. Now, let
xi := 1 − yi for all i ∈ V2. Then xi ≤ xj must holds whenever ij ∈ E.
Bipartite poset (V (G),≤) associated with the bipartite graphG = ([m]t
([n]\[m]), E) is the ground set [n] with the partial order:

i ≤ j whenever i ∈ V1, j ∈ V2 and ij ∈ E.

Note that bipartite posets defined as above are of height 2.
The volume of the graph polytope

P (G) = {(x1, x2, . . . , xm, ym+1, . . . , yn) ∈ [0, 1]n | xi + yj ≤ 1∀ij ∈ E}
can be described as

vol(P (G)) = vol({(x1, x2, . . . , xm, ym+1, . . . , yn) ∈ Q | xi + yj ≤ 1∀ij ∈ E})
= vol({x ∈ Q | xi ≤ xj∀ij ∈ E})
= vol({x ∈ Q | xi ≤ xj whenever j covers i in the poset V (G)})
where x = (x1, x2, . . . , xm, xm+1, . . . , xn).

Let e(V (G)) be the set of all linear extensions in the bipartite poset
V (G). Then we have

{x ∈ Q | xi ≤ xj whenever j covers i in the poset V (G)}
=

⋃

σ∈e(V (G))

P (σ),

where

P (σ) = {x ∈ Q | 0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xin ≤ 1}σ=(i1,i2,...,in).

Note that vol(P (σ)) = 1
n! and vol(P (σ) ∩ P (τ) = 0 if σ, τ ∈ e(V (G))

with σ 6= τ . Let e(G) be the number of linear extensions in the bipartite
poset V (G). Then we have the conclusion stated in the next theorem.
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Proposition 5.1. Let G = (V = V1 t V2, E) be a bipartite graph,
P (G) its associated graph polytope, (V (G),≤) its bipartite poset, and
e(G) the number of linear extensions for the bipartite poset (V (G),≤).
Then the formula

e(G) = n! · vol(P (G))

holds.

Theorem 5.2. Let G = (V = V1tV2, E) be a bipartite graph. Then
the recursion formula on the number of linear extensions holds:

e(G) =
1

2

∑

i∈V
e(G− i),

where G − i is the graph with the vertex set V \{i} and, accordingly,
with the inherited edge set in the original edge set E.

Proof. From Theorem 2.3 and Proposition 5.1 our conclusion follows
immediately.

Recently we knew that the formula obtained in Theorem 5.2 is ex-
actly the one that Stachowiak [3] had found in 1988. However, we get
the formula directly from the recursive volume formula(RVF) given in
Theorem 2.3.

Example 5.3. Let G = (V,E) where V = {1, 2} ∪ {3, 4}, E =
{13, 23, 24}. From the bipartite graph G we obtain the bipartite poset
(V (G),≤) whose order relation is as follows: 1 ≤ 3 ≥ 2 ≤ 4. There are
5 linear extensions 1234, 1243, 2134, 2143, 2413 as we mentioned in the
previous example.

P (G) = {(x1, x2, y3, y4) ∈ [0, 1]4|x1 + y3 ≤ 1, x2 + y3 ≤ 1, x2 + y4 ≤ 1}.
We let x3 := 1− y3, x4 := 1− y4. Then we get a new polytope

P ′(G) = {(x1, x2, x3, x4) ∈ [0, 1]4|x1 ≤ x3, x2 ≤ x3, x2 ≤ x4}.
Note that vol(P (G)) = vol(P ′(G)). We can decompose P ′(G)) into 5
simplices (each of them has volume 1/4!), like

1234 ↔ {0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1}
1243 ↔ {0 ≤ x1 ≤ x2 ≤ x4 ≤ x3 ≤ 1}
2134 ↔ {0 ≤ x2 ≤ x1 ≤ x3 ≤ x4 ≤ 1}
2143 ↔ {0 ≤ x2 ≤ x1 ≤ x4 ≤ x3 ≤ 1}
2413 ↔ {0 ≤ x2 ≤ x4 ≤ x1 ≤ x3 ≤ 1}.
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n\m m=0 1 2 3 4 5 6 7
n=0 1 1 2 6 24 120 720 5040

1 1 2 6 24 120 720 5040 40320
2 2 5 18 84 480 3240 25200 221760
3 5 16 70 384 2520 19200 166320 1612800
4 16 61 310 1938 14280 120720 1149120 12146400
5 61 272 1582 11136 91224 848640 8814960 100961280
6 272 1385 9058 70824 638064 6474480 72848160 898470720
7 1385 7936 57678 496128 4876344 53606400 649574640 8583966720

Table 1. Table of e(PS(n,m))(0 ≤ m,n ≤ 7)

Theorem 3.2 and Theorem 5.2 give next results concerning the num-
ber of linear extensions.

Corollary 5.4. The number e(PS(n,m)) of linear extensions in the
path-star graph of order n,m is given by the following formula:

e(PS(n,m)) =




(n+m+ 1)!

∑
k≥0

(−1)kEn−2k−1

(2k+1)!(n−2k−1)!(2k+m+2) , n is odd,

(n+m+ 1)!
∑

k≥0
(−1)kEn−2k

(2k)!(n−2k)!(2k+m+1) · 1

(2k+m
2k )

, n is even.

Remark 5.5. Table 1 shows values of e(PS(n,m)) for small values
of n and m. There is an information (see OEIS[4]) about the sequences
given by the first three rows and columns as below:

• m = 0 ↔ En+1 (A000111)
• m = 1 ↔ En+2 (A000111)
• m = 2 ↔ [2(x− 1) tan(x2 + π

4 )− x2 + 2]/x3 (A131281)
• n = 0 ↔ n! (A000142)
• n = 1 ↔ (m+ 1)! (A000142)

• n = 2 ↔ (m+1)!(m+4)
2 (A038720)

There is no information in the other sequences in Table 1.

6. Concluding Remarks

One of the most curious problems is the characterization of the vol-
ume size of the graph polytopes for the trees of n-vertices. So far, all
the volumes of the graph polytopes in the trees are distinct for different
trees up to n = 11(we checked it!). Is there any general method to order
the volumes in the tree case linearly? All the path-star type graphs are
specific kinds of trees. If we generalize our formula in such a way that
at each vertex of the path we attach suitable size of star graph, we guess
that we can describe the volume formulas for some other types of the
trees. We also can raise the problem for the cycles rather than paths



84 Hyeong-Kwan Ju and Soo-Jeong Seo

as well as the complete graphs, which seems to be quite nontrivial. It
would be interesting to analyze the poset structures which consist of the
faces of the graph polytopes for the path-star type graphs.
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