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ON RIEMANN DELTA-ALPHA FRACTIONAL

INTEGRALS ON TIME SCALES

Dafang Zhao∗ and Jian Cheng

Abstract. In this paper, we introduce and investigate the concept
of Riemann Delta-alpha fractional integral on time scales. Many
properties of this integral will be obtained.

1. Introduction

Fractional Calculus is a generalization of ordinary differentiation and
integration to arbitrary (non-integer) order. The subject is as old as the
calculus of differentiation and goes back to times when Leibniz, Gauss,
and Newton invented this kind of calculation. During three centuries,
the theory of fractional calculus developed as a pure theoretical field,
useful only for mathematicians. Nowadays, the fractional calculus at-
tracts many scientists and engineers. There are several applications of
this mathematical phenomenon in mechanics, physics, chemistry, control
theory and so on [3,4,7-11].

Recently, the author in [6] define a new well-behaved simple fractional
derivative called the conformable fractional derivative depending just on
the basic limit definition of the derivative and α−fractional integral. In
this paper we define the Riemann Delta-alpha fractional integral on time
scales, which gives a common generalization of the α−fractional integral
and the usual Riemann ∆−integral [1,2,5].

Received July 29, 2015. Accepted February 12, 2016.
2010 Mathematics Subject Classification. 26A33; 26E70.
Key words and phrases. fractional integral, Riemann Delta integral, time scales.
Supported by Educational Commission of Hubei Province of China(Q20152505).
*Corresponding author



142 Dafang Zhao and Jian Cheng

2. Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. For a, b ∈
T we define the closed interval [a, b]T by [a, b]T = {t ∈ T : a ≤ t ≤ b}.
For t ∈ T we define the forward jump operator σ(t) by σ(t) = inf{s >
t : s ∈ T} where inf ∅ = sup{T}, while the backward jump operator ρ(t)
is defined by ρ(t) = sup{s < t : s ∈ T} where sup ∅ = inf{T}.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say
that t is left-scattered. If σ(t) = t, we say that t is right-dense, while if
ρ(t) = t, we say that t is left-dense. A point t ∈ T is dense if it is right and
left dense; isolated if it is right and left scattered. The forward graininess
function µ(t) and the backward graininess function η(t) are defined by
µ(t) = σ(t)− t, η(t) = t−ρ(t) for all t ∈ T respectively. If supT is finite
and left-scattered, then we define Tk := T\ supT, otherwise Tk := T; if
inf T is finite and right-scattered, then Tk := T\ inf T, otherwise Tk :=
T. We set Tk

k := Tk
⋂
Tk.

A function f : [a, b]T → R is called regulated provided its right-sided
limit exists at all right-dense point of [a, b)T and its left-sided limit exists
at all left-dense point of (a, b]T

A partition of [a, b]T is any finite ordered subset

P = {t0, t1, . . . , tn} ⊂ [a, b]T, where a = t0 < t1 < . . . < tn = b.

Each partition P = {t0, t1, . . . , tn} of [a, b]T decomposes it into subin-
tervals [ti−1, ti)T, i = 1, 2, . . . , n, such that for i 6= j one has [ti−1, ti)T ∩
[tj−1, tj)T = ∅.

By P([a, b]T) we denote the set of all partitions of [a, b]T. Let Pn, Pm ∈
P([a, b]T). If Pn ⊂ Pm we call Pn a refinement of Pm. If Pn, Pm are
independently chosen, then the partition Pn∪Pm is a common refinement
of Pn and Pm.

Let f : [a, b]T → R be a real-valued bounded function on [a, b]T. We
denote

M = sup{f(t)σ(t)α−1 : t ∈ [a, b)T}, m = inf{f(t)σ(t)α−1 : t ∈ [a, b)T},
and for 1 ≤ i ≤ n,

Mi = sup{f(t)σ(t)α−1 : t ∈ [ti−1, ti)T},

mi = inf{f(t)σ(t)α−1 : t ∈ [ti−1, ti)T},
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The upper Darboux ∆α−sum of f with respect to the partition P ,
denoted by U(f, P ), is defined by

U(f, P ) =
n∑

i=1

Mi(ti − ti−1),

while the lower Darboux ∆α−sum of f with respect to the partition P ,
denoted by L(f, P ), is defined by

L(f, P ) =

n∑

i=1

mi(ti − ti−1).

Note that

U(f, P ) ≤
n∑

i=1

M(ti − ti−1) = M(b− a)

and

L(f, P ) ≥
n∑

i=1

m(ti − ti−1) = m(b− a).

Thus, we have:

m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(b− a).

3. The Riemann Delta-alpha fractional integral

Definition 3.1 Let I = [a, b]T, where a, b ∈ T. The upper Darboux
∆α−fractional integral of f from a to b is defined by

∫ b

a
f(t)∆αt = inf

P∈P([a,b]T)
U(f, P );

The lower Darboux ∆α−fractional integral of f from a to b is defined
by

∫ b

a
f(t)∆αt = sup

P∈P([a,b]T)
L(f, P ).

If
∫ b
a f(t)∆αt =

∫ b
a f(t)∆αt, then we say that f is Darboux ∆α−fractional

integrable on [a, b]T, and the common value of the integrals, denoted by∫ b
a f(t)∆αt, is called the Darboux ∆α−fractional integral.
Definition 3.2 Let I = [a, b]T, where a, b ∈ T. The upper Darboux

∆− integral of f from a to b is defined by
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∫ b

a
f(t)∆t = inf

P∈P([a,b]T)
U(f, P )

where U(f, P ) denote the upper Darboux ∆−sum of f with respect to
the partition P and

U(f, P ) =
n∑

i=1

Mi(ti − ti−1),Mi = sup{f(t) : t ∈ [ti−1, ti)T}.

The lower Darboux ∆− integral of f from a to b is defined by

∫ b

a
f(t)∆t = sup

P∈P([a,b]T)
L(f, P ).

where L(f, P ) denote the lower Darboux ∆−sum of f with respect to
the partition P and

L(f, P ) =
n∑

i=1

mi(ti − ti−1),mi = inf{f(t) : t ∈ [ti−1, ti)T}.

If
∫ b
a f(t)∆t =

∫ b
a f(t)∆t, then we say that f is Darboux ∆−integrable

on [a, b]T, and the common value of the integrals, denoted by
∫ b
a f(t)∆t,

is called the Darboux ∆−integral.
We can easily get the following theorem.

Theorem 3.3 Let f : [a, b]T → R is Darboux ∆α−fractional inte-
grable on [a, b]T. If α = 1, then f is Darboux ∆−integrable on [a, b]T.

The proofs of the following two Theorems are standard and similar
to [11,Theorem 5.5 and 5.6].

Theorem 3.4 Let L(f, P ) = U(f, P ) for some P ∈ P([a, b]T), then
the function f is Darboux ∆α−fractional integrable on [a, b]T and

∫ b

a
f(t)∆αt = L(f, P ) = U(f, P ).

Theorem 3.5 (Cauchy criterion) Let f : [a, b]T → R be a bounded
function on [a, b]T. Then the function f is Darboux ∆α−fractional in-
tegrable on [a, b]T if and only if for every ε > 0 there exists a partition
P ∈ P([a, b]T) such that U(f, P )− L(f, P ) < ε.

The following lemma can be found in [11].
Lemma 3.6 Let I = [a, b]T be a closed (bounded) interval in T. For

every δ > 0 there is a partition Pδ = {t0, t1, . . . , tn} ∈ P([a, b]T) such
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that for each i one has:

ti − ti−1 ≤ δ or ti − ti−1 > δ ∧ ρ(ti) = ti−1.

For each δ > 0, we denote by Pδ ∈ Pδ([a, b]T) the set of all P ∈
P([a, b]T) that possess the property indicated in Lemma 3.6.

The next theorem gives another Cauchy criterion for integrability.
Theorem 3.7 A bounded function f on [a, b]T is Darboux ∆α−fractional

integrable if and only if for each ε > 0 there exists δ > 0 such that
P ∈ Pδ([a, b]T) implies

U(f, P )− L(f, P ) < ε.

Proof. If for each ε > 0 there exists δ > 0 such that Pδ ∈ P([a, b]T)
implies

U(f, Pδ)− L(f, Pδ) < ε,

then we have that f is Darboux ∆α−fractional integrable on [a, b]T by
Theorem 3.4.

Conversely, suppose that f is Darboux ∆α−fractional integrable on
[a, b]T. Let ε > 0 and P0 ∈ P([a, b]T) given by

a = t0 < t1 < . . . < tn = b

such that
U(f, P0)− L(f, P0) < ε.

Let δ = ε
8nM , where M = sup{|f(t)σ(t)α−1| : t ∈ [a, b]T}.

Now we consider any P ∈ Pδ([a, b]T) given by

a = t′0 < t′1 < . . . < t′m = b.

Let P ′ = P ∪ P0. If P ′ has one more element, say t, than P , then we
will have t ∈ (t′i−1, t

′
i) for some i ∈ {1, 2, . . . ,m}, where t′i − t′i−1 < δ.

Then we have

L(f, P ′)− L(f, P ) = m
(1)
i (t− t′i−1) +m

(2)
i (t′i − t)−mi(t

′
i − t′i−1)

≤ M(t− t′i−1 + t′i − t+ t′i − t′i−1)

≤ 2Mδ.

Since P ′ has at most n − 1 elements that are not in P , an induction
argument shows that

L(f, P ′)− L(f, P ) ≤ 2(n− 1)Mδ = 2(n− 1)M
ε

8nM
<

ε

4
.

We also have L(f, P0)− L(f, P ) < ε
4 and U(f, P )− U(f, P0) <

ε
4 .

Therefore

U(f, P )− L(f, P ) < U(f, P0)− L(f, P0) +
ε

4
+

ε

4
< ε.
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We now give Riemanns definition of integrability.
Definition 3.8 Let f : T → R be a bounded function on [a, b]T, and

let P ∈ Pδ([a, b]T) be given by

a = t0 < t1 < . . . < tn = b.

For 1 ≤ i ≤ n, choose arbitrary points ξi ∈ [ti−1, ti)T and form the sum

S =
n∑

i=1

f(ξi)σ(ξi)
α−1(ti − ti−1).

We call S a Riemann ∆α−sum of f corresponding to P ∈ Pδ([a, b]T).
We say that f is Riemann ∆α−fractional integrable on [a, b]T if there
exists a number I with the following property: for each ε > 0 there exists
δ > 0 such that

|S − I| < ε

for every Riemann ∆α−sum of f corresponding to P ∈ Pδ([a, b]T) and
independent of the choice of ξi ∈ [ti−1, ti)T. The number I is called the
Riemann ∆α−fractional integral of f on [a, b]T. The Riemann ∆α−fractional
integral reduces to the Riemann ∆−fractional integral for α = 1.

From Definitions 3.1 and 3.8, we can get the following theorem.
Theorem 3.9 A bounded functions f : T→ R on [a, b]T is Riemann

∆α−fractional integrable if and only if it is Darboux ∆α−fractional in-
tegrable, in which case the values of the integrals are equal.

The Riemann ∆α−fractional integral has the following properties.
Here we will not dwell with the proofs.

Theorem 3.10 Let functions f, g : T → R be ∆α−fractional inte-
grable on [a, b]T, a < b < c and λ1, λ2 be arbitrary real numbers. Then,

(1) λ1f ± λ2g is Riemann ∆α−fractional integrable on [a, b]T and
∫ b

a
(λ1f(t)± λ2g(t))∆αt = λ1

∫ b

a
f(t)∆αt± λ2

∫ b

a
g(t)∆αt.

(2)
∫ c
a f(t)∆αt+

∫ b
c f(t)∆αt =

∫ b
a f(t)∆αt.

(3) if f ≤ g for t ∈ [a, b]T, then
∫ b
a f(t)∆αt ≤

∫ b
a g(t)∆αt.

(4) |f | is ∆α−fractional integrable on [a, b]T and | ∫ b
a f(t)∆αt| ≤∫ b

a |f(t)|∆αt.
(5) fg is Riemann ∆α−fractional integrable on [a, b]T.
The following theorem may be proved in much the same way as [11,

Theorem 5.18, 5.19, 5.20, 5.21.].
Theorem 3.11 Let I = [a, b]T, where a, b ∈ T.
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(¡) Every monotone function f is Riemann ∆α−fractional integrable
on [a, b]T.

(¡¡) Every continuous function f is Riemann ∆α−fractional integrable
on [a, b]T.

(¡¡¡) Every bounded function f with only finitely many discontinuity
points is Riemann ∆α−fractional integrable on [a, b]T.

(¡¡¡¡) Every regulated function f is Riemann ∆α−fractional integrable
on [a, b]T.

Theorem 3.12 Let f : T → R and t ∈ T. Then, f is Riemann
∆α−fractional integrable on [t, σ(t)]T and

∫ σ(t)

t
f(s)∆αs = µ(t)f(t)σ(t)α−1.

Proof. If t = σ(t), then the equality is obvious. If t < σ(t), then
P([t, σ(t)]T) contains only one element given by

t = s0 < s1 = σ(t).

Since [s0, s1)T = {t}, we have

U(f, P ) = L(f, P ) = f(t)σ(t)α−1(σ(t)− t) = µ(t)f(t)σ(t)α−1.

By Theorems 3.5 and 3.9, f is Riemann ∆α−fractional integrable on
[t, σ(t)]T and ∫ σ(t)

t
f(s)∆αs = µ(t)f(t)σ(t)α−1.

Theorem 3.13 Let f : T → R and t ∈ T. Then, f is Riemann
∆α−fractional integrable on [ρ(t), t]T and

∫ t

ρ(t)
f(s)∆αs = η(t)fρ(t)σ(ρ(t))α−1.

Proof. If t = ρ(t), then the equality is obvious. If t > ρ(t), then
[ρ(t), t]T contains only one element given by

ρ(t) = s0 < s1 = t.

Since [s0, s1)T = {ρ(t)}, we have

U(f, P ) = L(f, P ) = fρ(t)σ(ρ(t))α−1(t− ρ(t)) = η(t)fρ(t)σ(ρ(t))α−1.

By Theorems 3.5 and 3.9, f is Riemann ∆α−fractional integrable on
[ρ(t), t]T and ∫ t

ρ(t)
f(s)∆αs = η(t)fρ(t)σ(ρ(t))α−1.
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By the definition of the Riemann ∆α−fractional integral and Theorem
3.13, we have the following corollary:

Corollary 3.14 Let a, b ∈ T and a < b. Then we have the following:
(i). If T = R, then a bounded function f is Riemann ∆α−fractional

integrable on [a, b]T if and only if f(t)tα−1 is Riemann integrable on
[a, b]T in the classical sense, and in this case

∫ b

a
f(t)∆αt =

∫ b

a
f(t)tα−1dt.

(ii). If T = Z, then each function f : Z→ R is Riemann ∆α−fractional
integrable on [a, b]T. Moreover

∫ b

a
f(t)∆αt =

b−1∑
t=a

f(t)(t+ 1)α−1.

(iii). If T = hZ, then each function f : hZ → R is Riemann
∆α−fractional integrable on [a, b]T. Moreover

∫ b

a
f(t)∆αt =

b
h
−1∑

k= a
h

f(kh)(kh+ h)α−1h.

Example. Let f : [1, 2] ∪ {3, 4} → R be defined by f(t) = t, α = 1
2 .

Then,
∫ 4

1
f(t)∆ 1

2
t =

∫ 2

1
f(t)t−

1
2dt+

∫ 4

3
f(t)∆ 1

2
t

=

∫ 2

1
t
1
2dt+ f(3)4−

1
2

=
4
√
2

3
+

5

6
.
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