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CONSTANT CURVATURES AND SURFACES OF

REVOLUTION IN L3

Ju-Yeon Kang and Seon-Bu Kim∗

Abstract. In Minkowskian 3-spacetime L3 we find timelike or space-
like surface of revolution for the given Gauss curvature K = −1, 0, 1
and mean curvature H = 0. In fact, we set up the surface of revolu-
tion with the time axis for z-axis to be able to draw those surfaces
on standard pictures in Minkowskian 3-spacetime L3.

1. Introduction

Herman Minkowski (1864-1909) developed the 4-dimensional differ-
ential geometry which consists of one time axis and three space axes
behind Special Relativity. To draw the figures of the relativistic ge-
ometrical models in the space of three axes, we reduce Minkowskian
4-spacetime to 3-spacetime which consists of one time axis and two
space axes. Hence we may observe the (2-dimensional) timelike or
spacelike surfaces in 3-dimensional Minkowskian 3-spacetime L3(cf. [1],
[3]). For the surfaces in Euclidean 3-space E3, there are several texts
to study the Gaussian and mean curvatures(cf. [4], [5], [6]). We also
observe the first and second fundamental forms and their coefficients
E,F,G and L,M,N to define the Gaussian curvature K and mean cur-
vature H of the 2-dimensional timelike and spacelike surfaces in L3.
We now set up the surface of revolution M in the Minkowskian 3-space
L3 whose revolution axis is the time axis z and the profile curve is
α(u) = (b(u), 0, a(u)) where b(u) > 0. Then the coordinate patch is
given by X(u, v) = (b(u) cos v, b(u) sin v, a(u)) 0 < u < 2π. To treat the
Gaussian curvature simply, we use the unit speed profile curve and thus
we have the Theorem 3.3 as follows.
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For a unit speed timelike or spacelike profile curve of the surface of

revolution M in L3, the Gaussian curvature is K =
b′′(u)
b(u)

.

Note that for a unit speed profile curve of the surface of revolution

M in E3, the Gaussian curvature is K = −b′′(u)
b(u)

. (cf. [5])

If H = 0 we may deal with the minimal or maximal surface of rev-
olution in L3 which is the similar problem of the minimal surface of
revolution in E3. To simplify the equation H = 0 we assume a′(u) 6= 0
and apply the inverse function theorem to obtain the Theorem 4.1 af-
ter reparametrization of the profile curve of the profile curve α(u) =
(b(u), 0, a(u)) by the form α(u) = (b(u), 0, u).

Theorem 4.1 If M is a minimal timelike surface of revolution in

L3, then M is a cone; z = sin−1(
√

x2 + y2). If M is a maximal
spacelike surface of revolution in L3, then M is a pseudo-sphere; z =

sinh−1(
√

x2 + y2).

Finally, we find surfaces of revolution for the unit speed profile curve
as given above in cases of Gaussian curvature K = 1, K = 0, and
K = −1 as follows.

Theorem 5.1 Let M be a surface of revolution with K = 1 in L3. If
M is timelike, then M is a cone;

z = ±1

c

∫ √
x2 + y2 + 2du.

If M is spacelike, then M is a paraboloid;

z = ±
√

x2 + y2 + 1.

Theorem 5.2 Let M be a surface of revolution with K = 0 in L3. If
M is timelike, then M is a cone;

z = A1

√
x2 + y2 +B1,

where |A1| > 1 and B1 are constants. If M is spacelike, then M is a
cone;

z = A2

√
x2 + y2 +B2,

where |A2| < 1 and B2 are constants.
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Theorem 5.3 Let M be a surface of revolution with K = −1 in L3. If
M is spacelike, then M is no longer a surface. If M is timelike, then M
is a cone;

z =
1

c

∫ √
2c2 − x2 − y2du+ d2

where c, d are constants.

2. Preliminaries

Let x = (x1, x2, x3) and y = (y1, y2, y3) be two vectors in R3. A
bilinear form g on R3 is said to be the Lorentz metric defined by

g(x, y) = x1y1 + x2y2 − x3y3.

From now on, L3 = (R3, g) is said to be the Minkowskian space.
A regular curve α : I → L3 is said to be timelike(or spacelike) if

its velocity vector α′(t) for all t ∈ I is a timelike (or spacelike) vector
respectively. Related to the metric g, the cross product x and y in L3 is
given by

x× y =

∣∣∣∣∣∣

i j −k
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣
.

In this paper, we may sometimes use just by < , > for the inner product
g( , ) in L3 without ambiguity.

Let D be an open subset of R2 and let X : D → R3 be a differentiable
function. Then X : D → E3(or L3) is said to be regular if Xu ×Xv 6= 0
on D. Moreover, if X is a 1-1 regular map, then X is said to be a
coordinate patch.
If a coordinate patch X : D → E3(or L3) has a continuous inverse
function X−1 : X(D) → D, then X is said to be a proper patch. Further,
we call M a (regular) surface in E3 if for each p ∈ M there is a proper
patch X : D → E3 containing an open neighborhood of p. Also, a
surface M in L3 is said to be timelike(or spacelike) if given any p ∈ M ,
there exists a coordinate patch X : D → M ⊂ L3 with p ∈ X(D) such
that

U =
Xu ×Xv

|Xu ×Xv|
is spacelike(or timelike) at p.

Suppose that M is a timelike or spacelike surface in L3 = (R3, g).
Since the the first fundamental form is defined by the inner product in
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L3, it is defined by Ip(v, w) = g(v, w) for v, w ∈ TpM , p ∈ M where g
denotes the Lorentz metric on R3.

To study local properties of a surface in L3, the coefficients of the first
fundamental form are given by E = g(Xu, Xu)p, F = g(Xu, Xv)p, G =
g(Xv, Xv)p, where g is the Lorentz metric on R3.

In L3 = (R3, g), for the timelike(resp. spacelike) unit normal vector

field U =
Xu ×g Xv

|Xu ×g Xv| defined on the spacelike(resp. timelike) surface

M , we may define the timelike(resp. spacelike) Gauss map U : M → H2

where H2 = {x ∈ L3 | |x|g = 1} = {x ∈ L3 | g(x, x) = −1} ∪ {x ∈
L3 | g(x, x) = 1}. Further, we have the differential map dUp : TpM →
TpM as in E3.

At a point p ∈ M the second fundamental form

IIp : TpM → R

is defined by IIp(w) = − < dU(w), w > for w ∈ TpM for a surface M
in L3 as in E3.
Given w ∈ TpM , on a coordinate patch X(u, v) containing a neigh-
borhood of p, there is a curve α : (−ε, ε) → M such that α(t) =
X(u(t), v(t)), α(0) = p and α′(0) = w. Then, differentiating < (U ◦
α)(t), α′(t) >= 0 we obtain

IIp(w) = − < dU(w), w >

= − < (U ◦ α)′(0), α′(0) >=< (U ◦ α)(0), α′′(0) > .

Since α′′(t) =
d2X

dt2
= Xuu(u

′(t))2 + 2Xuvu
′(t)v′(t) + Xvv(v

′(t))2 +

Xuu
′′(t) +Xvv

′′(t), the second fundamental form IIα(t) along α(t) is
〈
U ◦ α(t), Xuu

(
du

dt

)2

+ 2Xuv
du

dt

dv

dt
+Xvv

(
dv

dt

)2
〉

as < U,Xu >=< U,Xv >= 0. Therefore, the second fundamental form
II on X(u, v) which is independent of any curve is given by

II =< Xuu(du)
2 + 2Xuvdudv +Xvv(dv)

2, U >

= Ldu2 + 2Mdudv +Ndv2

where L =< Xuu, U >, M =< Xuv, U >, N =< Xvv, U > are called the
coefficient of the 2nd fundamental form. Gauss himself introduced the
notations L,M,N for these quantities.
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Using the coefficients of the 1st and 2nd fundamental forms I, II, the
Gaussian curvature K and the mean curvature H on a given surface are
given by

K =
LN −M2

EG− F 2
, H =

EN +GL− 2FM

2(EG− F 2)
.

For a point p on a surface in E3 we say

(1) p is an elliptic point if K(p) > 0,

(2) p is a hyperbolic point if K(p) < 0,

(3) p is a parabolic point if K(p) = 0 and if L2 +M2 +N2 6= 0,

and

(4) p is a planar point if K(p) = 0 and if L = M = N = 0.

Moreover, if H = 0 on a timelike (or spacelike) surface M in L3, then
M is called the minimal(or maximal) surface.

3. Surfaces of revolution in L3

We construct the timelike (or spacelike) surfaces of revolution M
by revolving a given timelike(or spacelike) curve α in xz-plane in L3.
Corresponding to the Euclidean case, we take the profile curve α(u) of
the form α(u) = (b(u), 0, a(u)) with a′(u) 6= 0 and b(u) > 0. Then the
parametrization of the surface M is obtained by

X(u, v) = (b(u) cos v, b(u) sin v, a(u)).

To compute the Gaussian curvature and the mean curvature, we
should find the coefficients {E,F,G} of the first fundamental form I and
the coefficients {L,M,N} of the second fundamental form II. Namely,

Xu = (b′(u) cos v, b′(u) sin v, a′(u))

Xv = (−b(u) sin v, b(u) cos v, 0)

E =< Xu, Xu >= b′(u)2 − a′(u)2

F =< Xu, Xv >= 0

G =< Xv, Xv >= b(u)2

Xu ×g Xv = (−a′(u)b(u) cos v,−a′(u)b(u) sin v,−b(u)b′(u))

= b(u)(−a′(u) cos v,−a′(u) sin v,−b′(u))

|Xu ×g Xv| = b(u)
√

|a′(u)2 − b′(u)2|
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U =
Xu ×g Xv

|Xu ×g Xv| =
(−a′(u) cos v,−a′(u) sin v,−b′(u))√

|a′(u)2 − b′(u)2|
Xuu = (b′′(u) cos v, b′′(u) sin v, a′′(u))

Xuv = (−b′(u) sin v, b′(u) cos v, 0)

Xvv = (−b(u) cos v,−b(u) sin v, 0)

L =< Xuu, U >=
−a′(u)b′′(u) + a′′(u)b′(u)√

|a′(u)2 − b′(u)2|
M =< Xuv, U >= 0

N =< Xvv, U >=
a′(u)b(u)√

|a′(u)2 − b′(u)2| .

Remark 3.1. Since

< U,U >=
a′(u)2 − b′(u)2

|a′(u)2 − b′(u)2| = −< α′(u), α′(u) >
|a′(u)2 − b′(u)2| ,

α is timelike (or spacelike) if and only if U is spacelike (or timelike).
Equivalently, M is a timelike (or spacelike) surface respectively in L3.

The mean curvature of the surface of revolution M in L3 is given by

H =
EN +GL− 2FM

2(EG− F 2)

=
(b′(u)2 − a′(u)2)a′(u)b(u)

2b(u)2
√
|a′(u)2 − b′(u)2|(b′(u)2 − a′(u)2)

+
b(u)2(−a′(u)b′′(u) + a′′(u)b′(u))

2b(u)2
√
|a′(u)2 − b′(u)2|(b′(u)2 − a′(u)2)

=
1

2

(
a′(u)

b(u)
√
|(a′(u))2 − (b′(u))2| +

−a′(u)b′′(u) + a′′(u)b′(u)√
|(a′(u))2 − (b′(u))2|(b′(u)2 − a′(u)2)

)
.

Since a′(u) 6= 0 by hypothesis, using the inverse function theorem we
may rearrange a(u) to be a(u) = u. Hence a′(u) = 1, and a′′(u) = 0.
Thus,

H =
1

2

(
1

b(u)
√
|(1− (b′(u))2| +

−b′′(u)√
|1− (b′(u))2|(b′(u)2 − 1)

)

=
b′(u)2 − 1− b(u)b′′(u)

2b(u)
√
|1− (b′(u))2|(b′(u)2 − 1)

.(3.1)
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Theorem 3.2. For the timelike or spacelike profile curve of type
α(u) = (b(u), 0, u), the surface of revolution M in L3, the mean curva-
ture is

H =
b′(u)2 − 1− b(u)b′′(u)

2b(u)
√
|1− (b′(u))2|(b′(u)2 − 1)

.

Now, the Gaussian curvature of the surface of revolution M is given
by

K =
LN −M2

EG− F 2

=
−a′(u)a′(u)b(u)b′′(u) + a′(u)a′′(u)b(u)b′(u)

b(u)2|b′(u)2 − a′(u)2|(b′(u)2 − a′(u)2)

=
−a′(u)a′(u)b′′(u) + a′(u)a′′(u)b′(u)
b(u)|b′(u)2 − a′(u)2|(b′(u)2 − a′(u)2)

in L3.
To simplify the Gaussian curvatures we assume that α(t) is unit speed.
Thus,

(b′(u))2 − (a′(u))2 = ±1.(3.2)

Differentiating (3.2),

2b′(u)b′′(u)− 2a′(u)a′′(u) = 0

b′(u)b′′(u) = a′(u)a′′(u).(3.3)

Hence

K =
−a′(u)a′(u)b′′(u) + a′(u)a′′(u)b′(u)

b(u)(b′(u)2 − a′(u)2)

=
−a′(u)a′(u)b′′(u) + b′(u)b′′(u)b′(u)

b(u)(b′(u)2 − a′(u)2)

=
b′′(u)(−a′(u)2 + b′(u)2)
b(u)(b′(u)2 − a′(u)2)

=
b′′(u)
b(u)

.

Then we have

Theorem 3.3. For a unit speed timelike or spacelike profile curve of

the surface of revolution M in L3, the Gaussian curvature is K =
b′′(u)
b(u)

.
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4. Minimal or Maximal Surfaces of revolution in L3

Suppose M be a timelike or spacelike surface of revolution in L3.
SinceM is minimal or maximal, H = 0. And hence we have a differential
equation derived from (3.1),

b′(u)2 − b(u)b′′(u)− 1 = 0.(4.1)

To solve this equation, set w = b′. Then b′′ =
d

du

(
db

du

)
=

dw

du
, By the

chain rule, b′′ =
dw

db

db

du
= w

dw

db
. Hence, the equation (4.1) implies

w2 − bw
dw

db
− 1 = 0.(4.2)

By the separation of variables,∫
w

w2 − 1
dw =

∫
1

b
db,

1

2
ln |w2 − 1| = ln |bC1|, where C1 is constant. Thus,

|w2 − 1| = (bC1)
2.(4.3)

Since the profile curve is α(u) = (b(u), 0, u), α′(u) = (b′(u), 0, 1), and
hence < α′(u), α′(u) >= b′(u)2 − 1 = w2 − 1.

Theorem 4.1. If M is a minimal timelike surface of revolution
in L3, then M is a cone; z = sin−1(

√
x2 + y2). If M is a maxi-

mal spacelike surface of revolution in L3, then M is a pseudo-sphere

z = sinh−1(
√

x2 + y2).

Proof. Case 1. M is timelike. In this case, w2 − 1 < 0. From
the equation (4.3), 1 − w2 = (bC1)

2, i.e., w2 = 1 − (bC1)
2. Hence

db

du
= ±

√
1− (bC1)2. By the separation of variables,

∫
1

C1

d(bC1)√
1− (bC1)2

= ±
∫

du.

Since sin−1(bC1) = ±C1(u+ C2),

b = ± 1

C1
sin(C1u+ C1C2)

where C2 is also constant. Then, we have a general solution

b = ±c sin
(u
c
+ d

)
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where c, d are constants. We may also assume d = 0 by performing a
reparametrization ũ = u + cd. Moreover, since b(u) > 0 by hypothesis,

we take the positive sign for 0 <
u

c
< π. Hence, M is a surface given by

the coordinate patch

X(u, v) =
(
c sin

(u
c

)
cos v, c sin

(u
c

)
sin v, u

)

with the timelike profile curve α(u) =
(
c sin

(u
c

)
, 0, u

)
. Scaling X(u, v)

by c, we have

X(u, v) =
(
sin

(u
c

)
cos v, sin

(u
c

)
sin v,

u

c

)
.

Thus, x2 + y2 = sin2
(u
c

)
, or

√
x2 + y2 = sin

(u
c

)
. Therefore, z =

u

c
=

sin−1(
√

x2 + y2).

Case 2. M is spacelike. In this case, w2 − 1 > 0. From the equation

(4.3), w2 = 1 + (bC1)
2, or

db

du
= ±

√
1 + (bC1)2. By the separation of

variables, ∫
1

C1

dbC1√
1 + (bC1)2

= ±
∫

du.

Since sinh−1(bC1) = ±C1(u+ C2),

b = ± 1

C1
sinh(C1u+ C1C2)

where C2 is also constant. Then, we have a general solution

b = ±c sinh
(u
c
+ d

)

where c, d are constants. We may also assume d = 0 by performing a
reparametrization ũ = u + cd. Moreover, since b(u) > 0 by hypothesis,

we take the positive sign for 0 <
u

c
. Hence, M is a surface given by the

coordinate patch

X(u, v) =
(
c sinh

(u
c

)
cos v, c sinh

(u
c

)
sin v, u

)

with the timelike profile curve α(u) =
(
c sinh

(u
c

)
, 0, u

)
. ScalingX(u, v)

by c, we have

X(u, v) =
(
sinh

(u
c

)
cos v, sinh

(u
c

)
sin v,

u

c

)
.
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Thus, x2 + y2 = sinh2
(u
c

)
, or

√
x2 + y2 = sinh

(u
c

)
. Therefore, z =

u

c
= sinh−1(

√
x2 + y2).

5. Surfaces of revolution with constant Gaussian curvatures
in L3

We have seen the Gaussian curvatureK of the surface of revolutionM
with the unit speed profile curve α(u) = (b(u), 0, a(u)) in Theorem 3.3.
Hence if M is a timelike surface in L3, b′(u)2 − a′(u)2 = −1. And if M
is a spacelike surface in L3, b′(u)2 − a′(u)2 = 1.

Now, we will construct the surfaces of positive, zero and negative con-
stant Gaussian curvatures in L3. By scaling them, we use the Gaussian
Curvatures K = 1, K = 0 and K = −1.

(I) K = 1. Since K =
b′′(u)
b(u)

= 1, b′′(u) − b(u) = 0. To solve this

equation, set w = b′ as Case 1. Since b′′(u) = w
dw

db
, w

dw

db
− b(u) = 0.

Or, ∫
wdw =

∫
bdb.

Thus

w2 = b2 + C1,(5.1)

where C1 is constant. So,
db

du
= ±√

C1 + b2.

Integrating this equation,∫
db√

C1 + b2
= ±(u+ C2),

where C2 is constant. We may take a positive constant C1. Hence ,

sinh−1 b√
C1

= ±(u+ C2).

Thus we have

b = ±
√

C1 sinh(u+ C2).

By performing the reparametrization ũ =
√
C1u,

b = ±
√
C1 sinh

(
ũ√
C1

+ C2

)
.
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Or, resetting constants c =
√
C1 and d = C2,

b = ±c sinh

(
ũ

c
+ d

)
.

Again reparametrizing by u = ũ+ cd, and taking the positive sign

b = c sinh
(u
c

)
.

Theorem 5.1. Let M be a surface of revolution with K = 1 in L3.
If M is timelike, then M is a cone;

z = ±1

c

∫ √
x2 + y2 + 2du.

If M is spacelike, then M is a paraboloid;

z = ±
√

x2 + y2 + 1.

Proof. Case1. M is timelike. Since 0 = b′2 − a′2 + 1 = cosh2
(u
c

)
−

a′2 + 1, a′2 = cosh2
(u
c

)
+ 1. Thus, a′(u) = ±

√
cosh2

(u
c

)
+ 1 Hence,

for 0 <
u

c
,

a(u) = ±
∫ √

cosh2
(u
c

)
+ 1du.

Therefore, we have the profile curve α(u) for the timelike surface of
revolution M by

α(u) =

(
c sinh

(u
c

)
, 0,±

∫ √
cosh2

(u
c

)
+ 1du

)
.

Thus, we obtain the coordinate patch for M given by

X(u, v) =

(
c sinh

(u
c

)
cos v, c sinh

(u
c

)
sin v,±

∫ √
cosh2

(u
c

)
+ 1du

)
,

or scaling by c,

X(u, v) =

(
sinh

(u
c

)
cos v, sinh

(u
c

)
sin v,±1

c

∫ √
cosh2

(u
c

)
+ 1du

)
.

Since x2 + y2 = sinh2
(u
c

)
= cosh2

(u
c

)
− 1,

z =
1

c

∫ √
cosh2

(u
c

)
+ 1du = ±1

c

∫ √
x2 + y2 + 2du.
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Note that since we may estimate a(u) approximately by Taylor expan-

sion about u = 0, we have a(u) = ±
(√

2u+
u3

6
√
2c2

+
u5

48
√
2c4

+O(u7)

)
.

Hence we can draw X(u, v) by using a computer program for some value
of c.

Case2. M is spacelike. Then 0 = b′2 − a′2 − 1 = cosh2
(u
c

)
− a′2 − 1,

or a′2 = cosh2
(u
c

)
− 1 = sinh2

(u
c

)
. Hence, for 0 <

u

c
,

a(u) = ±c cosh
(u
c

)
.

Therefore, we have the profile curve α(u) for the timelike surface of
revolution M by

α(u) =
(
c sinh

(u
c

)
, 0,±c cosh

(u
c

))
.

Thus, we obtain the coordinate patch for M given by

X(u, v) =
(
c sinh

(u
c

)
cos v, c sinh

(u
c

)
sin v,±c cosh

(u
c

))
,

or scaling by c,

X(u, v) =
(
sinh

(u
c

)
cos v, sinh

(u
c

)
sin v,± cosh

(u
c

))
.

Since x2 + y2 = sinh2
(u
c

)
,

z2 = cosh2
(u
c

)
=

(
sinh2

(u
c

)
+ 1

)
= x2 + y2 + 1.

Since we have
z = ±

√
x2 + y2 + 1,

which is a paraboloid in L3.

(II) K = 0. Since K =
b′′(u)
b(u)

= 0, b′′(u) = 0. Hence b(u) = cu + d1

where c, d1 are constants.
If the profile curve α(u) is timelike (or spacelike),

(b′(u))2 − (a′(u))2 = −1 (or (b′(u))2 − (a′(u))2 = 1),

and hence

(a′(u))2 = (b′(u))2 + 1 = c+ 1 (or (a′(u))2 = (b′(u))2 − 1 = c− 1).

Thus we have

a(u) = ±
√

(c+ 1)u+ d2 (or a(u) = ±
√
(c− 1)u+ d2)
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respectively. So, the profile curve is

α(u) =
(
cu+ d1,±

√
(c+ 1)u+ d2

)
(or α(u) =

(
cu+ d1,±

√
(c− 1)u+ d2

)

respectively.
Therefore, if M is timelike (or spacelike), then the coordinate patch is

X(u, v) =
(
(cu+ d1) cos v, (cu+ d1) sin v,±

√
(c+ 1)u+ d2

)

(or α(u) =
(
(cu+ d1) cos v, (cu+ d1) sin v,±

√
(c− 1)u+ d2

)
)

respectively.

Theorem 5.2. Let M be a surface of revolution with K = 0 in L3.
If M is timelike, then M is a cone;

z = A1

√
x2 + y2 +B1,

where |A1| > 1 and B1 are constants. If M is spacelike, then M is a
cone;

z = A2

√
x2 + y2 +B2,

where |A2| < 1 and B2 are constants.

Proof. Case 1. If α(u) is timelike,
√

x2 + y2 = cu+ d1.

Since u =
1

c

(√
x2 + y2 − d1

)
and since z = ±√

c+ 1u+ d2, we obtain

z =
±√

c+ 1

c

(√
x2 + y2 − d1

)
+ d2.

Hence

z =
(c− 1)

c

(√
x2 + y2 − d1

)
+ d2.

To simplify this equation, we set

A1 =
±√

c+ 1

c
and B1 =

±√
c+ 1d1
c

+ d2.

Since c > −1, c 6= 0. Thus

z = A1

√
x2 + y2 +B1,

where A1 and B1 are constants.

Case 2. If α(u) is spacelike, then
√

x2 + y2 = cu+ d1 and z = ±√
c− 1u+ d2.
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Since u =
1

c

(√
x2 + y2 − d1

)
and since z = ±√

c− 1u+ d2, we obtain

z =
±√

c− 1

c

(√
x2 + y2 − d1

)
+ d2.

Hence

z =
±√

c− 1

c

(√
x2 + y2 − d1

)
+ d2.

To simplify this equation, we set

A2 =
±√

c− 1

c
and B2 =

±√
c− 1d1
c

+ d2.

Since c > 1. Thus

z = A2

√
x2 + y2 +B2,

where A2 and B2 are constants.

(III) K = −1. Since K =
b′′(u)
b(u)

= −1, b′′(u) + b(u) = 0. To solve

this equation, set w = b′. Since b′′(u) = w
dw

db
, w

dw

db
+ b(u) = 0. Or,

∫
wdw = −

∫
bdb.

Thus

w2 = −b2 + C1,

where C1 is constant. So,
db

du
= ±√

C1 − b2, C1 > 0.

Integrating this equation,
∫

db√
C1 − b2

= ±(u+ C2),

where C2 is constant. Hence ,

sin−1 b√
C1

= ±(u+ C2).

Thus we have

b = ±
√

C1 sin(u+ C2).

By performing the reparametrization ũ =
√
C1u,

b = ±
√
C1 sin

(
ũ√
C1

)
+ C2.
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Or, resetting the variable u = ũ, constants c =
√
C1 and d1 = C2,

b = ±c sin
(u
c

)
+ d1.

Theorem 5.3. Let M be a surface of revolution with K = −1 in L3.
If M is spacelike, then M is no longer a surface. If M is timelike, then
M is a cone;

z =
1

c

∫ √
2c2 − x2 − y2du+ d2

for d1 = 0, where d2 is constant.

Proof. Case 1. If M is spacelike, then

a′(u) = ±
√

b′(u)2 − 1 = ±
√
cos2

(u
c

)
− 1.

It works when
u

c
= 0, π,−π. Then a(u) is a point, say z0. Hence

X(u, v) = (d1 cos v, d1 sin v, z0) ,

which is no longer a surface.

Case 2. If M is timelike, since a′(u) = ±
√
b′(u)2 + 1, we have

a′(u) = ±
√

cos2
(u
c

)
+ 1.

Thus

a(u) = ±
∫ √

cos2
(u
c

)
+ 1du+ d2,

where d2 is constant. So, we have the profile curve of M by

α(u) =

(
c sin

(u
c

)
+ d1,±

∫ √
cos2

(u
c

)
+ 1du+ d2

)
.

Therefore, we obtain a coordinate patch for the timelike surface of rev-
olution M in L3 as follows;

X(u, v) =
((

c sin
(u
c

)
+ d1

)
cos v,

(
c sin

(u
c

)
+ d1

)
sin v,

±
∫ √

cos2
(u
c

)
+ 1du+ d2

)
.
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Since x2+y2 =
(
c sin

(u
c

)
+ d1

)2
, ±

√
x2 + y2 = c sin

(u
c

)
+d1. Taking

the positive sign, sin
(u
c

)
=

1

c

(√
x2 + y2 − d1

)
. Thus,

z = ±
∫ √

cos2
(u
c

)
+ 1du+ d2

= ±
∫ √

2−
(
1

c

(√
x2 + y2 − d1

))2

du+ d2.

If d1 = 0,

z = ±1

c

∫ √
2c2 − x2 − y2du+ d2.

Remark 5.4. When M is a timelike surface, it is hard to solve the

integration of a(u) = ±
∫ √

cos2
(u
c

)
+ 1du+ d2 while Maple program

may show the figure. Thus, we may try to approximate this integration
using the Taylor series.

As the Case1 in Theorem 5.1, since we may estimate a(u) approxi-
mately by Taylor expansion about u = 0, we have

a(u) = ±
(√

2u− u3

6
√
2c2

+
u5

48
√
2c4

+O(u7)

)
.

Hence we can also draw X(u, v) by using a computer program for some
value of c.
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