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ITERATED ENTIRE FUNCTIONS AND THEIR

GROWTH PROPERTIES ON THE BASIS OF (p, q)-TH

ORDER

Tanmay Biswas, Junesang Choi∗,
Pranab Das and Sanjib Kumar Datta

Abstract. Entire functions have been investigated so popularly
to have been divided into a large number of specialized subjects.
Even the limited subject of entire functions is too vast to be dealt
with in a single volume with any approach to completeness. Here,
in this paper, we choose to investigate certain interesting results
associated with the comparative growth properties of iterated entire
functions using (p, q)-th order and (p, q) -th lower order, in a rather
comprehensive and systematic manner.

1. Introduction, Definitions and Notations

Throughout this paper, let N, R+ and C be the sets of positive in-
tegers, positive real numbers and finite complex numbers, respectively.
The following notations are used:

log[k] x :=

{
log

(
log[k−1] x

)
(k ∈ N)

x (k = 0)

and

exp[k] x :=

{
exp

(
exp[k−1] x

)
(k ∈ N)

x (k = 0).

Let f be analytic on the closed disk |z| ≤ r for some r ∈ R+ and let
M (r, f) be the maximum modulus of the function f on the closed disk
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|z| ≤ r. Then it is easy to see from the maximum modulus theorem that

M (r, f) = sup
|z|=r

|f (z)| .

Alternatively, another growth indicator closely related to an entire
function f is so-called Nevanlinna’s characteristic function of f , which
is denoted by T (r, f), is defined as follows:

T (r, f) :=
1

2π

2π∫

0

log+
∣∣∣f

(
reiθ

)∣∣∣ dθ,

where log+ x := max {log x, 0} (x > 0). It is easy to see that

T (r, f) ≤ log+ M(r, f)

for all entire functions f and all r ∈ R+.

The following definitions are recalled.

Definition 1.1. The order ρf and the lower order λf of an entire
function f are defined, respectively, as follows:

ρf := lim sup
r→∞

log[2]M (r, f)

log r
and λf := lim inf

r→∞
log[2]M (r, f)

log r
.

Definition 1.2. (see [10]). Let l ∈ N \ {1}. The generalized

order ρ
[l]
f and the generalized lower order λ

[l]
f of an entire function f are,

respectively, defined by

ρ
[l]
f := lim sup

r→∞
log[l]M (r, f)

log r
and λ

[l]
f := lim inf

r→∞
log[l]M (r, f)

log r
.

It is obvious that the special case of Definition 1.2 when l = 2 coin-
cides with Definition 1.1.

Definition 1.3. A function ρ
[l]
f (r) is called a generalized proximate

order of a meromorphic function f relative to T (r, f) if

(i) ρ
[l]
f (r) is non-negative and continuous for r > r0, say,

(ii) ρ
[l]
f (r) is differentiable for r > r0 except possibly at isolated points

at which ρ
[l]′
f (r + 0) and ρ

[l]′
f (r − 0) exist,

(iii) lim
r→∞ρ

[l]
f (r) = ρ

[l]
f < ∞,
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(iv) lim
r→∞ρ

[l]′
f (r)

l−1
Π
j=0

log[j] r = 0 and

(v) lim sup
r→∞

log[l−2] T (r,f)

r
ρ
[l]
f

(r)
= 1.

It is noted that the existence of such a proximate order in Definition
1.3 is proved by Lahiri [8]. Similarly, a generalized lower proximate order
of f can be defined in the following way.

Definition 1.4. A function λ
[l]
f (r) is defined as a generalized lower

proximate order of a meromorphic function f relative to T (r, f) if

(i) λ
[l]
f (r) is non-negative and continuous for r > r0, say,

(ii) λ
[l]
f (r) is differentiable for r > r0 except possibly at isolated points

at which λ
[l]′
f (r + 0) and λ

[l]′
f (r − 0) exist,

(iii) lim
r→∞λ

[l]
f (r) = λ

[l]
f < ∞,

(iv) lim
r→∞λ

[l]′
f (r)

l−1
Π
j=0

log[j] r = 0 and

(v) lim inf
r→∞

log[l−2] T (r,f)

r
λ
[l]
f

(r)
= 1.

Juneja et al. [7] defined the (p, q)-th order and (p, q)-th lower order
of an entire function f , respectively, as follows:
(1.1)

ρf (p, q) := lim sup
r→∞

log[p]M (r, f)

log[q] r
and λf (p, q) := lim inf

r→∞
log[p]M (r, f)

log[q] r
,

where p, q ∈ N with p ≥ q. For p = 2 and q = 1, we simplify to denote
ρf (2, 1) and λf (2, 1) by ρf and λf , respectively (see Definition 1.1).

If f (z) and g (z) are entire functions, then the iteration of f with
respect to g is defined as follows (see [10]):

f1 (z) := f (z) ;

f2 (z) := f (g (z)) = f (g1 (z)) ;

f3 (z) := f (g (f (z))) = f (g (f1 (z))) = f (g2 (z)) ;

· · ·
fn (z) := f (g (f · · · (h (z)) · · · )) (n ∈ N),

where h(z) = f (z) when n is odd and h(z) = g (z) when n is even.
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Similarly one defines

g1 (z) := g (z) ;

g2 (z) := g (f (z)) = g (f1 (z)) ;

· · ·
gn (z) := g (f (gn−2 (z))) = g (fn−1 (z)) (n ∈ N).

It is obvious that fn (z) and gn (z) (n ∈ N) are all entire functions.

The growth properties of entire functions using (p, q)-th order and
(p, q)-th lower order have been investigated in such works as (for exam-
ple) [2, 3, 5, 7]. In the sequel of these works, in this paper, we aim at
investigating further growth properties of iterated entire functions on
the basis of (p, q)-th order and (p, q)-th lower order under the restriction
p, q ∈ N with p ≥ q, in a rather comprehensive and systematic manner.

2. Lemmas

Here we present certain required properties involving the definitions
in Section 1. We begin by presenting a class of functions Al (r) (l ∈ N)
with A0 (r) a constant such that

(2.1) Al (r) = log

{
Bl−1 +

Al−1 (r)

fl−1 (r)

}
,

where Bl−1 (l ∈ N) is a constant and fl−1 (r) (l ∈ N \ {1}) is an
increasing function of r with f0 (r) = 1. It is obvious that

lim
r→∞

Al (r)

F (r)
= 0

for all functions F (r) satisfying the properties of Nevanlinna’s charac-
teristic function or maximum modulus function. It should be noted that
in our subsequent discussion, Al (r) may be different for different values
of l unless otherwise stated.

Lemma 2.1. (see [1]). If f and g are any two entire functions,
then, for all sufficiently large values of r ∈ R+,

M(r, f ◦ g) ≤ M (M (r, g) , f) .

Lemma 2.2. Let f and g be any two entire functions such that
ρf (p, q) < ∞ and ρg (a, b) < ∞ where a, b, p, q ∈ N with a ≥ b and
p ≥ q. Then, for all sufficiently large values of r and any ε ∈ R+, the
following inequalities hold true:
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• For any even n ∈ N
(i) (q < a, b < p)

log[p+
n−2
2

(a−q)+n−2
2

(p−b)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g)+Al (r) ;

(ii) (p = b ≥ q, a > q, n > 2)

log[p+
n−2
2

(a−q)]M (r, fn)

≤ (ρf (p, q) + ε) (ρg (a, b) + ε) log[q]M (r, g) +Al (r) ;

(iii) (p > b, q = a)

log[p+
n−2
2

(p−b)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g) +Al (r) ;

(iv) (a = b = p = q)

log[p]M (r, fn) ≤ (ρf (p, q) + ε)
n
2 (ρg (a, b) + ε)

n−2
2 log[q]M (r, g) ;

(v) (p = a > q = b)

log[p+(n−2)(p−q)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g) +Al (r) .

(vi) (p < b, q < a, b− p = a− q)

log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε)
n−2
2 log[a]M (r, g) +Al (r) ;

(vii) (p < b, q < a, b− p < a− q)

log[p+a+n−2
2

(a−b)−q]M (r, fn) ≤ log[a]M (r, g) +Al (r) ;

(viii) (p > b, q > a, q − a = p− b)

log[p]M (r, fn) ≤ (ρf (p, q) + ε)
n
2 log[q]M (r, g) +Al (r) ;

(ix) (p > b, q > a, q − a < p− b)

log[p+
n−2
2

(p+a−b−q)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g) +Al (r) ;

• For any odd n ∈ N \ {1}
(x) (q < a, b < p)

log[p+
n−1
2

(a−q)+n−3
2

(p−b)]M (r, fn) ≤ (ρg (a, b) + ε) log[b]M (r, f)+Al (r) ;

(xi) (p = b ≥ q, a > q)

log[p+
n−1
2

(a−q)]M (r, fn) ≤ (ρg (a, b) + ε) log[b]M (r, f) +Al (r) ;
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(xii) (p > b, q = a)

log[p+
n−3
2 (p−b)]M (r, fn) ≤ (ρf (p, q) + ε) (ρg (a, b) + ε) log[b] M (r, f) +Al (r) ;

(xiii) (a = b = p = q)

log[p]M (r, fn) ≤ [(ρf (p, q) + ε) (ρg (a, b) + ε)]
n−1
2 log[b]M (r, f) ;

(xiv) (p = a > q = b)

log[p+(n−2)(p−q)]M (r, fn) ≤ (ρg (p, q) + ε) log[q]M (r, f) +Al (r) ;

(xv) (p < b, q < a, b− p = a− q)

log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε)
n−1
2 log[b]M (r, f) +Al (r) ;

(xvi) (p < b, q < a, b− p < a− q)

log[p+a+n−3
2

(a−b)−q]M (r, fn) ≤ (ρg (a, b) + ε) log[b]M (r, f) +Al (r) ;

(xvii) (p > b, q > a, q − a = p− b)

log[p]M (r, fn) ≤ (ρf (p, q) + ε)
n−1
2 log[p]M (r, f) +Al (r) ;

(xviii) (p > b, q > a, q − a < p− b)

log[p+
n−1
2

(p+a−b−q)]M (r, fn) ≤ log[p]M (r, f) +Al (r) ;

where Al are given in (2.1).

Proof. Let n ∈ N be an even integer for (i)-(ix). Then it follows from
Lemma 2.1 that, for all sufficiently large values of r,

log[p]M (r, fn) = M (r, f ◦ gn−1) ≤ log[p]M (M (r, gn−1) , f) .

Therefore, in view of (1.1), for all sufficiently large values of r, we find

(2.2) log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, gn−1)

for any ε ∈ R+.

Case I. q < a and b < p.

It is seen from (2.2) that, for all sufficiently large values of r,

log[p+a−q]M (r, fn) ≤ log[a]M (r, gn−1) +Al (r) .
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Applying (2.2) to continue this process, we have

log[p+a−q]M (r, fn) ≤ log[a]M (M (r, fn−2) , g) +Al (r) ,

(2.3) log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε) log[b]M (r, fn−2) +Al (r) ,

log[p+a−q+p−b]M (r, fn) ≤ log[p]M (M (r, gn−3) , f) +Al (r) ,

and so on. We thus have that, for even n ∈ N,
log[p+

n−2
2

(a−q)+n−2
2

(p−b)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g)+Al (r) .

Similarly, we find that, for odd n ∈ N \ {1},
log[p+

n−1
2

(a−q)+n−3
2

(p−b)]M (r, fn) ≤ (ρg (a, b) + ε) log[b]M (r, f)+Al (r) .

Hence (i) and (x) of the lemma are established.

Case II. p = b ≥ q and a > q.

Here we find from (2.3) that, for all sufficiently large values of r,

log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε) log[p]M (r, fn−2) +Al (r) ,

from which we have

log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε) log[p]M (M (r, gn−3) , f) +Al (r) .

Continuing this process to arrive at the following inequality: For even
n ∈ N \ {1, 2},
log[p+

n−2
2

(a−q)]M (r, fn) ≤ (ρf (p, q) + ε) (ρg (a, b) + ε) log[q]M (r, g)+Al (r) .

Likewise, for odd n ∈ N \ {1},
log[p+

n−1
2

(a−q)]M (r, fn) ≤ (ρg (a, b) + ε) log[b]M (r, f) +Al (r) .

Hence (ii) and (xi) of the lemma are proved.

Case III. p ≥ b and q = a.

It follows from (2.2) that, for all sufficiently large values of r,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[a]M (r, gn−1) .

Continuing this process, we have

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[a]M (M (r, fn−2) , g) ,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) (ρg (a, b) + ε) log[b]M (r, fn−2) ,

log[p+p−b]M (r, fn) ≤ log[p]M (M (r, gn−3) , f) +Al (r) ,

and so on.
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We finally arrive at the following inequality: For even n ∈ N,
log[p+

n−2
2

(p−b)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g) +Al (r) .

Similarly, for odd n ∈ N \ {1}, we find

log[p+
n−3
2 (p−b)]M (r, fn) ≤ (ρf (p, q) + ε) (ρg (a, b) + ε) log[b] M (r, f) +Al (r) .

Hence we prove (iii) and (xii) of the lemma.

Case IV. a = b = p = q.

We have from (2.2) that, for all sufficiently large values of r,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[a]M (r, gn−1) .

Continuing this process, we have

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[a]M (M (r, fn−2) , g) ,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) (ρg (a, b) + ε) log[b]M (M (r, gn−3) , f) ,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) (ρg (a, b) + ε) log[p]M (M (r, gn−3) , f) ,

and so on.
We finally have the following inequality: For even n ∈ N,
log[p]M (r, fn) ≤ (ρf (p, q) + ε)

n
2 (ρg (a, b) + ε)

n−2
2 log[q]M (r, g) .

Likewise, for odd n ∈ N \ {1},
log[p]M (r, fn) ≤ [(ρf (p, q) + ε) (ρg (a, b) + ε)]

n−1
2 log[b]M (r, f) .

Hence (iv) and (xiii) of the lemma are established.

Case V. p = a > q = b.

We find from (2.2) that, for all sufficiently large values of r,

log[p+p−q]M (r, fn) ≤ log[p]M (r, gn−1) +Al (r) .

Continuing this process, we have

log[p+p−q]M (r, fn) ≤ log[p]M (M (r, fn−2) , g) +Al (r) ,

log[p+p−q]M (r, fn) ≤ (ρg (p, q) + ε) log[q]M (M (r, gn−3) , f) +Al (r) ,

log[p+2(p−q)]M (r, fn) ≤ log[p]M (M (r, gn−3) , f) +Al (r) ,

and so on.
We finally arrive at the following inequality: For even n ∈ N,
log[p+(n−2)(p−q)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g) +Al (r) .
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Similarly, for odd n ∈ N \ {1}, we have

log[p+(n−2)(p−q)]M (r, fn) ≤ (ρg (p, q) + ε) log[q]M (r, f) +Al (r) .

Hence we prove (v) and (xiv) of the lemma.

Case VI. p < b, q < a, b− p = a− q.

We see from (2.3) that, for all sufficiently large values of r,

log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε) log[b−p]
[
log[p]M (r, fn−2)

]
+Al (r) .

Continuing this process, we have

log[p+a−q] M (r, fn)

≤ (ρg (a, b) + ε) log[b−p]
[
(ρf (p, q) + ε) log[q] M (r, gn−3)

]
+Al (r) ,(2.4)

log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε) log[a]M (M (r, fn−4) , g) +Al (r) ,

and so on.
We thus have the following inequality: For even n ∈ N,
log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε)

n−2
2 log[a]M (r, g) +Al (r) .

Likewise, for odd n ∈ N \ {1}, we have

log[p+a−q]M (r, fn) ≤ (ρg (a, b) + ε)
n−1
2 log[b]M (r, f) +Al (r) .

Hence (vi) and (xv) of the lemma are proved.

Case VII. p < b, q < a, b− p < a− q.

It follows from (2.4) that, for all sufficiently large values of r,

log[p+a−q+a−q−b+p]M (r, fn) ≤ log[a]M (M (r, fn−4) , g) +Al (r) .

Continuing this process to finally give the following inequality: For even
n ∈ N,

log[p+a−q+n−2
2

(a−q−b+q)]M (r, fn) ≤ log[a]M (r, g) +Al (r) .

Similarly, for odd n ∈ N \ {1}, we have

log[p+a−q+n−3
2

(a−q−b+q)]M (r, fn) ≤ (ρg (a, b) + ε) log[b]M (r, f)+Al (r) .

Hence (vii) and (xvi) of the lemma are established.

Case VIII. p > b, q > a, q − a = p− b.
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We find from (2.2) that, for all sufficiently large values of r,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, gn−1) ,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[q−a] log[a]M (r, gn−1) ,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[q−a]
[
log[a]M (M (r, fn−2) , g)

]
,

log[p]M (r, fn)

≤ (ρf (p, q) + ε) log[q−a]
[
(ρg (a, b) + ε) log[b]M (r, fn−2)

]
,(2.5)

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[p]M (M (r, gn−3) , f) +Al (r) ,

and so on.
We finally have the following inequality: For even n ∈ N,

log[p]M (r, fn) ≤ (ρf (p, q) + ε)
n
2 log[q]M (r, g) +Al (r) .

Likewise, for odd n ∈ N \ {1}, we have

log[p]M (r, fn) ≤ (ρf (p, q) + ε)
n−1
2 log[p]M (r, f) +Al (r) .

Hence (viii) and (xvii) of the lemma are proved.

Case IX. p > b, q > a, q − a < p− b.

We find from (2.5) that, for all sufficiently large values of r,

log[p]M (r, fn) ≤ (ρf (p, q) + ε) log[q−a+b]M (r, fn−2) +Al (r) ,

log[p+p+a−b−q]M (r, fn) ≤ log[p]M (M (r, gn−3) , f) +Al (r) ,

and so on.
We finally arrive at the following inequality: For even n ∈ N,
log[p+

n−2
2

(p+a−b−q)]M (r, fn) ≤ (ρf (p, q) + ε) log[q]M (r, g) +Al (r) .

Similarly, for odd n ∈ N \ {1}, we have

log[p+
n−1
2

(p+a−b−q)]M (r, fn) ≤ log[p]M (r, f) +Al (r) .

Hence we prove (ix) and (xviii). This completes the proof of the
lemma.

Lemma 2.3. (see [4]). Let g be an entire function. Then, for any

δ > 0, the function rλ
[l]
g +δ−λ

[l]
g (r) is an increasing function of r.

Lemma 2.4. (see [4]). Let g be an entire function. Then, for any

δ > 0, the function rρ
[l]
g +δ−ρ

[l]
g (r) is an increasing function of r.
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3. Main Results

Here we state main results asserted by the following theorems.

Theorem 3.1. Suppose f and g are any two entire functions such

that ρf (p, q) and ρ
[l]
g are both finite for p, q, l ∈ N with p ≥ q and l ≥ 2.

Then, for any even n ∈ N, the following inequalities hold true:

(i) (p > 1, q = l > 2)

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q) · 2

λ
[l]
g
;

(ii) (p > 1, q = l = 2)

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

logM(r, g)
6 3 · ρf (p, q) · 2

λg
;

(iii) (p > 1, q > l > 2, q − l = p− 1)

lim inf
r→∞

log[p]M (r, fn)

log[l−1]M(r, g)
6 [ρf (p, q)]

n
2 · 2λ

[l]
g
;

(iv) (p > 1, q > l > 2, q − l < p− 1)

lim inf
r→∞

log[p+
n−2
2

(p+l−1−q)]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q) · 2

λ
[l]
g
;

(v) (p > 1, q > l = 2, q − l < p− 1)

lim inf
r→∞

log[p+
n−2
2

(p+1−q)]M (r, fn)

logM(r, g)
6 3 · ρf (p, q) · 2

λg
;

(vi) (q < l − 1, 1 < p)

lim inf
r→∞

log[
n
2
(l−q)+n

2
(p−1)]M (r, fn)

log[l−1]M(r, g)
6 2

λ
[l]
g
;

(vii) (p = q = 1, l − 1 > q, n > 2)

lim inf
r→∞

log[
n
2
(l−1)]M (r, fn)

log[l−1]M(r, g)
6 2

λ
[l]
g
;



180 T. Biswas, J. Choi, P. Das and S. K. Datta

(viii) (p = l, l − 1 > q = 1)

lim inf
r→∞

log[n(l−1)]M (r, fn)

log[l−1]M(r, g)
6 2

λ
[l]
g
.

Proof. We first consider the following two cases.
• l > 2.

Since lim inf
r→∞

log[l−2] T (r,g)

rλ
[l]
g (r)

= 1, for given ε (0 < ε < 1), we find that, for

a sequence of values of r ∈ R+ tending to infinity,

log[l−2] T (r, g) < (1 + ε)rλ
[l]
g (r)

and, for all sufficiently large r ∈ R+,

log[l−2] T (r, g) > (1− ε)rλ
[l]
g (r).

Since logM(r, g) ≤ 3T (2r, g), for a sequence of values of r tending to
infinity, we find that, for any δ > 0,

log[l−1]M(r, g)

log[l−2] T (r, g)
≤ log[l−2] {3T (2r, g)}

log[l−2] T (r, g)
=

log[l−2] T (2r, g)

log[l−2] T (r, g)

≤ 1 + ε

1− ε
· (2r)λ

[l]
g +δ

(2r)λ
[l]
g +δ−λ

[l]
g (2r)

· 1

rλ
[l]
g (r)

=
1 + ε

1− ε
· 2λ[l]

g +δ · rλ
[l]
g +δ−λ

[l]
g (r)

(2r)λ
[l]
g +δ−λ

[l]
g (2r)

.

In view of Lemma 2.3, since rλ
[l]
g +δ−λ

[l]
g (r) is an increasing function of

r, we have

log[l−1]M(r, g)

log[l−2] T (r, g)
≤ 1 + ε

1− ε
· 2λ

[l]
g +δ

.

Since both ε > 0 and δ > 0 are arbitrary, we get

(3.1) lim inf
r→∞

log[l−1]M(r, g)

log[l−2] T (r, g)
≤ 2

λ
[l]
g
.

• l = 2.

It follows from (v) of Definition 1.4 that

lim inf
r→∞

T (r, g)

rλg(r)
= 1.
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For given ε (0 < ε < 1), we see that, for a sequence of values of r ∈ R+

tending to infinity,

T (r, g) < (1 + ε)rλg(r)

and, for all sufficiently large values of r ∈ R+,

T (r, g) > (1− ε)rλg(r).

Since logM(r, g) ≤ 3T (2r, g), for a sequence of values of r ∈ R+

tending to infinity, we find that, for any δ > 0,

logM(r, g)

T (r, g)
≤ 3(1 + ε)

(1− ε)
· 2λg+δ · rλg+δ−λg(r)

(2r)λg+δ−λg(2r)
.

In view of Lemma 2.3, since rλg+δ−λg(r) is an increasing function of
r, we have

logM(r, g)

T (r, g)
≤ 3(1 + ε)

(1− ε)
· 2λg+δ

(3.2)

Since both ε > 0 and δ > 0 are arbitrary, we find from (3.2) that

(3.3) lim inf
r→∞

logM(r, g)

T (r, g)
≤ 3 · 2λg

.

Next consider the following more specified cases.

Case I. p > 1 and q = l > 2.
We find from the third part of Lemma 2.2 that, for all sufficiently

large values of r ∈ R+,

log[
n
2
(p−1)+1]M (r, fn) 6 (ρf (p, q) + ε) log[l−1]M (r, g) +Al (r) .

Since ε > 0 is arbitrary, we thus obtain that

(3.4) lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q)lim inf

r→∞
log[l−1]M (r, g)

log[l−2] T (r, g)
.

Case II. p > 1, q > l > 2 and q − l = p− 1.
We obtain from the eighth part of Lemma 2.2 that, for all sufficiently

large values of r ∈ R+,

log[p]M (r, fn) 6 (ρf (p, q) + ε)
n
2 log[l−1]M (r, g) +Al (r) .

Since ε > 0 is arbitrary, we thus find that

(3.5) lim inf
r→∞

log[p]M (r, fn)

log[l−1]M(r, g)
6 [ρf (p, q)]

n
2 lim inf

r→∞
log[l−1]M (r, g)

log[l−2] T (r, g)
.
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Case III. p > 1, q > l and q − l < p− 1.
We find from the ninth part of Lemma 2.2 that, for all sufficiently

large values of r ∈ R+,

log[p+
n−2
2

(p+l−1−q)]M (r, fn) 6 (ρf (p, q) + ε) log[l−1]M (r, g) +Al (r) .

Since ε > 0 is arbitrary, we thus have that
(3.6)

lim inf
r→∞

log[p+
n−2
2

(p+l−1−q)]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q) lim inf

r→∞
log[l−1]M (r, g)

log[l−2] T (r, g)
.

Case IV. q < l − 1 and 1 < p.
We find from the first part of Lemma 2.2 that, for all sufficiently large

values of r ∈ R+,

log[l−q−1] log[
n−2
2

(l−q)+n
2
(p−1)+1]M (r, fn)

6 log[l−q−1]
{
(ρf (p, q) + ε) log[q]M (r, g) +Al (r)

}
.

That is,

log[
n
2
(l−q)+n

2
(p−1)]M (r, fn) 6 log[l−1]M (r, g) +Al (r) .

So we have

log[
n
2
(l−q)+n

2
(p−1)]M (r, fn)

log[l−1]M(r, g)
6 log[l−1]M (r, g) +Al (r)

log[l−2] T (r, g)
.

We thus have

(3.7) lim inf
r→∞

log[
n
2
(l−q)+n

2
(p−1)]M (r, fn)

log[l−1]M(r, g)
6 lim inf

r→∞
log[l−1]M (r, g)

log[l−2] T (r, g)
.

Case V. p = q = 1, l − 1 > q and n > 2.
We find from the second part of Lemma 2.2 that, for all sufficiently

large values of r ∈ R+,

log[l−2] log[
n−2
2

(l−1)+1]M (r, fn)

6 log[l−2]
{
(ρf (1, 1) + ε)

(
ρ[l]g + ε

)
logM (r, g)

}
.

That is,

log[
n
2
(l−1)]M (r, fn) 6 log[l−1]M (r, g) +Al (r) .
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So we have

log[
n
2
(l−1)]M (r, fn)

log[l−1]M(r, g)
6 log[l−1]M (r, g) +Al (r)

log[l−2] T (r, g)
.

We thus have

(3.8) lim inf
r→∞

log[
n
2
(l−1)]M (r, fn)

log[l−1]M(r, g)
6 lim inf

r→∞
log[l−1]M (r, g)

log[l−2] T (r, g)
.

Case VI. p = l and l − 1 > q = 1.
We find from the fifth part of Lemma 2.2 that, for all sufficiently

large values of r ∈ R+,

log[l−2] log[(n−1)(l−1)+1]M (r, fn)

6 log[l−2] {(ρf (p, q) + ε) logM (r, g) +Al (r)} .
That is,

log[n(l−1)]M (r, fn) 6 log[l−1]M (r, g) +Al (r) .

So we have

log[n(l−1)]M (r, fn)

log[l−1]M(r, g)
6 log[l−1]M (r, g) +Al (r)

log[l−2] T (r, g)
.

We thus have

(3.9) lim inf
r→∞

log[n(l−1)]M (r, fn)

log[l−1]M(r, g)
6 lim inf

r→∞
log[l−1]M (r, g)

log[l−2] T (r, g)
.

Now it follows from (3.4) and (3.1) that

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q).2

λ
[l]
g
.

This proves the first part of the theorem.

For l = 2, in view of (3.3) and (3.4), we obtain

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

logM(r, g)
6 3.ρf (p, q).2

λg
.

Thus the second part of the theorem follows.

We find from (3.5) and (3.1) that

lim inf
r→∞

log[p]M (r, fn)

log[l−1]M(r, g)
6 [ρf (p, q)]

n
2 .2

λ
[l]
g
.



184 T. Biswas, J. Choi, P. Das and S. K. Datta

This proves the third part of the theorem.

From (3.6) and (3.1), we have

lim inf
r→∞

log[p+
n−2
2

(p+l−1−q)]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q) .2

λ
[l]
g
.

This proves the fourth part of the theorem.

For l = 2, in view of (3.3) and (3.6), we have

lim inf
r→∞

log[p+
n−2
2

(p+1−q)]M (r, fn)

logM(r, g)
6 3.ρf (p, q) .2

λg
.

Thus the fifth part of the theorem follows.

From (3.7) and (3.1), it follows that

lim inf
r→∞

log[
n
2
(l−q)+n

2
(p−1)]M (r, fn)

log[l−1]M(r, g)
6 2

λ
[l]
g
.

Thus the sixth part of the theorem is established.

We find from (3.8) and (3.1) that

lim inf
r→∞

log[
n
2
(l−1)]M (r, fn)

log[l−1]M(r, g)
6 2

λ
[l]
g
.

Thus the seventh part of the theorem follows.

From (3.9) and (3.1), we obtain

lim inf
r→∞

log[n(l−1)]M (r, fn)

log[l−1]M(r, g)
6 2

λ
[l]
g
.

Thus the eighth part of the theorem is established.

Corollary 3.2. Under the same conditions of Theorem 3.1 with l =
2, we have

lim inf
r→∞

log[
n
2
(p−1)+2]M (r, fn)

log[3]M(r, g)
6 1 (p > 1, q = 2)

and

lim inf
r→∞

log[p+
n−2
2

(p+1−q)+1]M (r, fn)

log[q+1]M(r, g)
6 1 (p > 1, q > 2, q − 1 < p).
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Proof. We find from (3.2) that, for a sequence of r ∈ R+ tending to
infinity,

logM(r, g) ≤
{
3(1 + ε)

(1− ε)
· 2λg+δ

}
· T (r, g) .

That is,

(3.10) log[q+1]M(r, g) ≤ log[q] T (r, g) +Al (r) .

Then we consider the following cases.

Case I. p > 1 and q = l.
It follows from the third part of Lemma 2.2 that, for all sufficiently

large values of r ∈ R+,

log[
n
2
(p−1)+1]M (r, fn) 6 (ρf (p, q) + ε) log[q]M (r, g) +Al (r) .

That is,

(3.11) log[
n
2
(p−1)+2]M (r, fn) 6 log[3]M (r, g) +Al (r) .

Now combining (3.10) and (3.11), we find that, for a sequence of r ∈ R+

tending to infinity,

log[
n
2
(p−1)+2]M (r, fn) 6 log[2] T (r, g) +Al (r) .

That is,

log[
n
2
(p−1)+2]M (r, fn)

log[3]M (r, g)
≤ 1 +

Al (r)

log[2] T (r, g)
.

We thus have

lim inf
r→∞

log[
n
2
(p−1)+3]M (r, fn)

log[3]M (r, g)
≤ 1.

Hence the first part of the corollary follows.

Case II. p > 1, q > l and q − l < p− 1.
From the ninth part of Lemma 2.2, we find that, for all sufficiently

large r ∈ R+,

(3.12) log[p+
n−2
2

(p+1−q)+1]M (r, fn) 6 log[q+1]M (r, g) +Al (r) .

Then, combining (3.10) and (3.12), we find that, for a sequence of r ∈ R+

tending to infinity,

log[p+
n−2
2

(p+1−q)+1]M (r, fn) 6 log[q] T (r, g) +Al (r) .
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That is,

log[p+
n−2
2

(p+1−q)+1]M (r, fn)

log[q+1]M (r, g)
≤ 1 +

Al (r)

log[q] T (r, g)
.

We thus have

lim inf
r→∞

log[p+
n−2
2

(p+1−q)+1] T (r, fn)

log[q+1]M (r, g)
≤ 1.

Hence the second part of the corollary follows.

In parallel with Theorem 3.1, we state the following theorem without
proof.

Theorem 3.3. Let f and g be any two entire functions such that

ρg(a, b) and ρ
[l]
f are both finite where a, b, l ∈ N with a ≥ b and l ≥ 2.

Let n ∈ N \ {1} be odd. Then the following inequalities hold true:

(i) (a > 1, b < l − 1)

lim inf
r→∞

log[l+
n−1
2

(a−1)+n−2
2

((l−b)−2)+1]M (r, fn)

log[l−1]M(r, f)
6 2

λ
[l]
f
;

(ii) (a = 1, b < l − 1)

lim inf
r→∞

log[l+
n−2
2

((l−b)−2)+1]M (r, fn)

log[l−1]M(r, f)
6 2

λ
[l]
f
;

(iii) (l = a > 1, l − 1 > b = 1)

lim inf
r→∞

log[n(l−1)−b+1]M (r, fn)

log[l−1]M(r, f)
6 2

λ
[l]
f
;

(iv) (l = b > 2, a > 1)

lim inf
r→∞

log[l+
n−1
2

(a−1)]M (r, fn)

log[l−1]M(r, f)
6 ρg(a, b) · 2

λ
[l]
f
;

(v) (a = b = l = 2)

lim inf
r→∞

log[
n−1
2

+2]M (r, fn)

logM(r, f)
6 3 ρg(2, 2) · 2

λf
;

(vi) (a > 1, b− l = a− 1)

lim inf
r→∞

log[l+a−1]M (r, fn)

log[l−1]M(r, f)
6 [ρg(a, b)]

n−1
2 · 2

λ
[l]
f
;
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(vii) (a > 1, b > l > 2, b− l < a− 1)

lim inf
r→∞

log[l+a+n−3
2

(a−b)−1]M (r, fn)

log[l−1]M(r, f)
6 ρg(a, b) · 2

λ
[l]
f
;

(viii) (a > 1, b > l = 2, b− l < a− 1)

lim inf
r→∞

log[a+
n−3
2

(a−b)+1]M (r, fn)

logM(r, f)
6 3 ρg(a, b) · 2

λf
.

Corollary 3.4. Under the same conditions of Theorem 3.3 with l =
2, the following inequalities hold true:

(i) (a = b = l)

lim inf
r→∞

log[
n−1
2

+2]M (r, fn)

logM(r, f)
6 1;

(ii) (a > 1, b > l, b− l < a− 1)

lim inf
r→∞

log[a+
n−3
2

(a−b)+2]M (r, fn)

log[b+1]M(r, f)
6 1.

Proof. A similar argument as in the proof of Corollary 3.2 will estab-
lish the results here. So the details of proof are omitted.

Theorem 3.5. Let f and g be any two entire functions such that

ρf (p, q) and ρ
[l]
g are both finite where p, q, l ∈ N with p ≥ q and l ≥ 2.

For any even n ∈ N, the following inequalities hold true:

(i) (p > 1, q = l > 2)

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q) · 2

ρ
[l]
g
;

(ii) (p > 1, q = l = 2)

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

logM(r, g)
6 3 ρf (p, q) · 2

ρg
;

(iii) (p > 1, q > l > 2, q − l = p− 1)

lim inf
r→∞

log[p]M (r, fn)

log[l−1]M(r, g)
6 [ρf (p, q)]

n
2 · 2ρ

[l]
g
;
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(iv) (p > 1, q > l > 2, q − l < p− 1)

lim inf
r→∞

log[p+
n−2
2

(p+l−1−q)]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q) · 2

ρ
[l]
g
;

(v) (p > 1, q > l = 2, q − l < p− 1)

(v) lim inf
r→∞

log[p+
n−2
2

(p+1−q)]M (r, fn)

logM(r, g)
6 3 ρf (p, q) · 2

ρg
;

(vi) (q < l − 1, 1 < p)

lim inf
r→∞

log[
n
2
(l−q)+n

2
(p−1)]M (r, fn)

log[l−1]M(r, g)
6 2

ρ
[l]
g
;

(vii) (p = q = 1, l − 1 > q, n > 2)

lim inf
r→∞

log[
n
2
(l−1)]M (r, fn)

log[l−1]M(r, g)
6 2

ρ
[l]
g
;

(viii) (p = l, l − 1 > q = 1)

lim inf
r→∞

log[n(l−1)]M (r, fn)

log[l−1]M(r, g)
6 2

ρ
[l]
g
.

Proof. Case I. l > 2.
Since

lim sup
r→∞

log[l−2] T (r, f)

rρ
[l]
f (r)

= 1,

for given ε (0 < ε < 1), we find that, for all sufficiently large r ∈ R+,

log[l−2] T (r, g) < (1 + ε)rρ
[l]
g (r),

and for a sequence of r ∈ R+ tending to infinity,

log[l−2] T (r, g) > (1− ε)rρ
[l]
g (r).

Since logM(r, g) ≤ 3T (2r, g), for a sequence of r ∈ R+ tending to infin-
ity, we see that, for any δ > 0,

log[l−1]M(r, g)

log[l−2] T (r, g)
≤ log[l−2] T (2r, g) +Al (r)

log[l−2] T (r, g)

≤ (1 + ε)

(1− ε)
· (2r)ρ

[l]
g +δ

(2r)ρ
[l]
g +δ−ρ

[l]
g (2r)

· 1

rρ
[l]
g (r)

+Al (r)

≤ (1 + ε)

(1− ε)
.2

ρ
[l]
g +δ

+Al (r) ,
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where the fact in Lemma 2.4 is used: rρ
[l]
g +δ−ρ

[l]
g (r) is an increasing func-

tion of r.
Since ε > 0 and δ > 0 are both arbitrary, we thus have

(3.13) lim inf
r→∞

log[l−1]M(r, g)

log[l−2] T (r, g)
≤ 2

ρ
[l]
g
.

Case II. l = 2.
Since

lim sup
r→∞

T (r, g)

rρg(r)
= 1,

in view of (v) of Definition 1.3, for given ε (0 < ε < 1), it follows that,
for all sufficiently large r ∈ R+,

T (r, g) < (1 + ε)rρg(r),

and for a sequence of r ∈ R+ tending to infinity,

T (r, g) > (1− ε)rρg(r).

Since logM(r, g) ≤ 3T (2r, g), for a sequence of r ∈ R+ tending to infin-
ity, we get that, for any δ > 0,

logM(r, g)

T (r, g)
≤ 3(1 + ε)

(1− ε)
· (2r)ρg+δ

(2r)ρg+δ−ρg(2r)
· 1

rρg(r)
+Al (r) .

In view of Lemma 2.4, since rρg+δ−ρg(r) is an increasing function of r,
we have

logM(r, g)

T (r, g)
≤ 3(1 + ε)

(1− ε)
· 2ρg+δ

+Al (r) .

Since ε > 0 and δ > 0 are both arbitrary, we thus find that

(3.14) lim inf
r→∞

logM(r, g)

T (r, g)
≤ 3 · 2ρg

.

Hence it follows from (3.4) and (3.13) that

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

log[l−1]M(r, g)
6 ρf (p, q) · 2

ρ
[l]
g
.

This proves the first part of the theorem.
For l = 2, in view of (3.4) and (3.14), we get

lim inf
r→∞

log[
n
2
(p−1)+1]M (r, fn)

logM(r, g)
6 3.ρf (p, q) · 2

ρg
.

Thus the second part of the theorem is established.
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Similarly, from (3.7) and (3.13), we get that

lim inf
r→∞

log[
n
2
(l−q)+n

2
(p−1)]M (r, fn)

log[l−1]M(r, g)
6 2

ρ
[l]
g
.

Thus the seventh part of the theorem follows.

Now, a similar argument as in the proof of Theorem 3.1, the other
parts of Theorem 3.5 can be established. So details of their proofs are
omitted.

Theorem 3.6. Let f and g be any two entire functions such that

ρg(a, b) and ρ
[l]
f are both finite where a, b, l ∈ N with a ≥ b and l ≥ 2.

For any odd n ∈ N \ {1}, the following inequalities hold true:

(i) (a > 1, b < l − 1)

lim inf
r→∞

log[l+
n−1
2

(a−1)+n−2
2

(l−b)−1]M (r, fn)

log[l−1]M(r, f)
6 2

ρ
[l]
f
;

(ii) (a = 1, b < l − 1)

lim inf
r→∞

log[l+
n−2
2

(l−b)−1]M (r, fn)

log[l−1]M(r, f)
6 2

ρ
[l]
f
;

(iii) (l = a > 1, l − 1 > b = 1)

lim inf
r→∞

log[n(l−1)−b+1]M (r, fn)

log[l−1]M(r, f)
6 2

ρ
[l]
f
;

(iv) (l = b > 2, a > 1)

lim inf
r→∞

log[l+
n−1
2

(a−1)]M (r, fn)

log[l−1]M(r, f)
6 ρg(a, b) · 2

ρ
[l]
f
;

(v) (a = b = l = 2)

lim inf
r→∞

log[
n−1
2

+2]M (r, fn)

logM(r, f)
6 3 ρg(2, 2) · 2

ρf
;

(vi) (a > 1, b > l, b− l = a− 1)

lim inf
r→∞

log[l+a−1]M (r, fn)

log[l−1]M(r, f)
6 [ρg(a, b)]

n−1
2 · 2

ρ
[l]
f
;
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(vii) (a > 1, b > l > 2, b− l < a− 1)

lim inf
r→∞

log[l+a+n−3
2

(a−b)−1]M (r, fn)

log[l−1]M(r, f)
6 ρg(a, b) · 2

ρ
[l]
f
;

(viii) (a > 1, b > l = 2, b− l < a− 1)

lim inf
r→∞

log[a+
n−3
2

(a−b)+1]M (r, fn)

logM(r, f)
6 3 ρg(a, b) · 2

ρf
.

Proof. The proof here can be carried out in parallel with that of
Theorem 3.5. So its detailed account is omitted.

The following two theorems are stated without proofs, since the re-
sults can be established in line with those in Lemma 2.2.

Theorem 3.7. Let f and g be any two entire functions such that
ρf (p, q) < ∞ and ρg (a, b) < ∞ where a, b, p, q ∈ N with a ≥ b and
p ≥ q. For any even n ∈ N, the following inequalities hold true:

(i) (q < a, b < p)

lim sup
r→∞

log[p+
n−2
2

(a−q)+n−2
2

(p−b)]M (r, fn)

log[q]M (r, g)
≤ ρf (p, q) ;

(ii) (p = b ≥ q, a > q, n > 2)

lim sup
r→∞

log[p+
n−2
2

(a−q)]M (r, fn)

log[q]M (r, g)
≤ ρf (p, q) · ρg (a, b) ;

(iii) (p > b, q = a)

lim sup
r→∞

log[p+
n−2
2

(p−b)]M (r, fn)

log[q]M (r, g)
≤ ρf (p, q) ;

(iv) (a = b = p = q)

lim sup
r→∞

log[p]M (r, fn)

log[q]M (r, g)
≤ [ρf (p, q)]

n
2 [ρg (a, b)]

n−2
2 ;

(v) (p = a > q = b)

lim sup
r→∞

log[p+(n−2)(p−q)]M (r, fn)

log[q]M (r, g)
≤ ρf (p, q) ;
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(vi) (p < b, q < a, b− p = a− q)

lim sup
r→∞

log[p+a−q]M (r, fn)

log[q]M (r, g)
≤ [ρg (a, b)]

n−2
2 ;

(vii) (p < b, q < a, b− p < a− q)

lim sup
r→∞

log[p+a+n−2
2

(a−b)−q]M (r, fn)

log[q]M (r, g)
≤ 1;

(viii) (p > b, q > a, q − a = p− b)

lim sup
r→∞

log[p]M (r, fn)

log[q]M (r, g)
≤ [ρf (p, q)]

n
2 ;

(ix) (p > b, q > a, q − a < p− b)

lim sup
r→∞

log[p+
n−2
2

(p+a−b−q)]M (r, fn)

log[q]M (r, g)
≤ ρf (p, q) .

Theorem 3.8. Let f and g be any two entire functions such that
ρf (p, q) and ρg (a, b) are finite where a, b, p, q ∈ N with a ≥ b and p ≥ q.
For any odd n ∈ N \ {1}, the following inequalities hold true:

(i) (q < a, b < p)

lim sup
r→∞

log[p+
n−1
2

(a−q)+n−3
2

(p−b)]M (r, fn)

log[b]M (r, f)
≤ ρg (a, b) ;

(ii) (p = b ≥ q, a > q)

lim sup
r→∞

log[p+
n−1
2

(a−q)]M (r, fn)

log[b]M (r, f)
≤ ρg (a, b) ;

(iii) (p > b, q = a)

lim sup
r→∞

log[p+
n−3
2

(p−b)]M (r, fn)

log[b]M (r, f)
≤ ρf (p, q) · ρg (a, b) ;

(iv) (a = b = p = q)

lim sup
r→∞

log[p]M (r, fn)

log[b]M (r, f)
≤ [ρf (p, q) · ρg (a, b)]

n−1
2 ;

(v) (p = a > q = b)

lim sup
r→∞

log[p+(n−2)(p−q)]M (r, fn)

log[b]M (r, f)
≤ ρg (p, q) ;
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(vi) (p < b, q < a, b− p = a− q)

lim sup
r→∞

log[p+a−q]M (r, fn)

log[b]M (r, f)
≤ [ρg (a, b)]

n−1
2 ;

(vii) (p < b, q < a, b− p < a− q)

lim sup
r→∞

log[p+a+n−3
2

(a−b)−q]M (r, fn)

log[b]M (r, f)
≤ ρg (a, b) ;

(viii) (p > b, q > a, q − a = p− b)

lim sup
r→∞

log[p]M (r, fn)

log[b]M (r, f)
≤ [ρf (p, q)]

n−1
2 ;

(ix) (p > b, q > a, q − a < p− b)

lim sup
r→∞

log[p+
n−1
2

(p+a−b−q)]M (r, fn)

log[b]M (r, f)
≤ 1.

Theorem 3.9. Let f and g be any two entire functions such that
ρf (p, q) and ρg (a, b) are finite where a, b, p, q ∈ N with a ≥ b and p ≥ q.
For any even n ∈ N, the following inequalities hold true:

(i) (q < a, b < p)

lim inf
r→∞

log[p+
n−2
2

(a−q)+n−2
2

(p−b)]M (r, fn)

log[q]M (r, g)
≤ λf (p, q) ;

(ii) (p = b ≥ q, a > q, n > 2)

lim inf
r→∞

log[p+
n−2
2

(a−q)]M (r, fn)

log[q]M (r, g)
≤ λf (p, q) · ρg (a, b) ;

(iii) (p > b, q = a)

lim inf
r→∞

log[p+
n−2
2

(p−b)]M (r, fn)

log[q]M (r, g)
≤ λf (p, q) ;

(iv) (a = b = p = q)

lim inf
r→∞

log[p]M (r, fn)

log[q]M (r, g)
≤ [ρf (p, q)]

(n
2
−1) · λf (p, q) · [ρg (a, b)]

n−2
2 ;

(v) (p = a > q = b)

lim inf
r→∞

log[p+(n−2)(p−q)]M (r, fn)

log[q]M (r, g)
≤ λf (p, q) ;
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(vi) (p > b, q > a, q − a = p− b)

lim inf
r→∞

log[p]M (r, fn)

log[q]M (r, g)
≤ λf (p, q) · [ρf (p, q)](

n
2
−1) ;

(vii) (p > b, q > a, q − a < p− b)

lim inf
r→∞

log[p+
n−2
2

(p+a−b−q)]M (r, fn)

log[q]M (r, g)
≤ λf (p, q) .

Theorem 3.10. Let f and g be any two entire functions such that
ρf (p, q) and ρg (a, b) are finite where a, b, p, q ∈ N with a ≥ b and p ≥ q.
For any odd n ∈ N \ {1}, the following inequalities hold true:

(i) (q < a, b < p)

lim inf
r→∞

log[p+
n−1
2

(a−q)+n−3
2

(p−b)]M (r, fn)

log[b]M (r, f)
≤ λg (a, b) ;

(ii) (p = b, a > q)

lim inf
r→∞

log[p+
n−1
2

(a−q)]M (r, fn)

log[b]M (r, f)
≤ λg (a, b) ;

(iii) (p > b, q = a)

lim inf
r→∞

log[p+
n−3
2

(p−b)]M (r, fn)

log[b]M (r, f)
≤ ρf (p, q) · λg (a, b) ;

(iv) (a = b = p = q)

lim inf
r→∞

log[p]M (r, fn)

log[b]M (r, f)
≤ [ρf (p, q)]

n−1
2 · [ρg (a, b)]

n−3
2 · λg (a, b) ;

(v) (p = a > q = b)

lim inf
r→∞

log[p+(n−2)(p−q)]M (r, fn)

log[b]M (r, f)
≤ λg (p, q) ;

(vi) (p < b, q < a, b− p = a− q)

lim inf
r→∞

log[p+a−q]M (r, fn)

log[b]M (r, f)
≤ λg (a, b) · [ρg (a, b)]

n−3
2 ;

(vii) (p < b, q < a, b− p < a− q)

lim inf
r→∞

log[p+a+n−3
2

(a−b)−q]M (r, fn)

log[b]M (r, f)
≤ λg (a, b) .
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Proof. The proofs of Theorems 3.9 and 3.10 can be carried out in line
with those of Theorems 3.7 and 3.8, respectively. So the details of their
proofs are omitted.

Theorem 3.11. Let f and g be any two entire functions such that
ρg(a, b) < λf (p, q) ≤ ρf (p, q) < ∞ where a, b, p, q ∈ N with a ≥ b and
p ≥ q. For any even n ∈ N, the following inequalities hold true:

(i) (p > b, q = a)

lim
r→∞

log[(p−1)+n−2
2

(p−b)+1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0;

(ii) (a = b = p = q) or (p > b, q > a, q − a = p− b)

lim
r→∞

log[p]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0;

(iii) (p > b, q > a, q − a < p− b)

lim
r→∞

log[p+
n−2
2

(p+a−b−q)]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0;

(iv) (q < a, b < p)

lim
r→∞

log[p+
n−2
2

(a−q)+n−2
2

(p−b)+a−q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0;

(v) (p = b ≥ q, a > q, n > 2)

lim
r→∞

log[p+
n−2
2

(a−q)+a−q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0;

(vi) (p = a > q = b)

lim
r→∞

log[p+(n−2)(p−q)+a−q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0;

(vii) (p < b, q < a, b− p = a− q)

lim
r→∞

log[p+2a−2q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0;

(viii) (p < b, q < a, b− p < a− q)

lim
r→∞

log[(p−q)+(a+b)+n
2
(a−b)−(q+2)+1]M

(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.
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Proof. Since ρg(m,n) < λf (p, q), we can choose ε > 0 small enough
that

(3.15) ρg(a, b) + ε < λf (p, q)− ε.

Now for all sufficiently large r ∈ R+,

log[a]M
(
exp[b−1] r, g

)
6 (ρg(a, b) + ε) log[b] exp[b−1] r.

That is,

log[a]M
(
exp[b−1] r, g

)
6 (ρg(a, b) + ε) log r.

We thus have

(3.16) log[a]M
(
exp[b−1] r, g

)
6 log r(ρg(a,b)+ε).

Or, equivalently,

(3.17) log[a−1]M
(
exp[b−1] r, g

)
6 r(ρg(a,b)+ε).

For all sufficiently large r ∈ R+, we also have

log[p]M(exp[q−1] r, f) > (λf (p, q)− ε) log[q] exp[q−1] r.

That is,

(3.18) log[p]M(exp[q−1] r, f) > (λf (p, q)− ε) log r.

We thus have

log[p]M(exp[q−1] r, f) > log r(λf (p,q)−ε).

Or, equivalently,

(3.19) log[p−1]M(exp[q−1] r, f) > r(λf (p,q)−ε).

Here we consider the following nine cases which may arise:

Case I. p > b and q = a.
We have from the third part of Lemma 2.2 that, for all sufficiently

large r ∈ R+,

(3.20)
log[(p−1)+n−2

2
(p−b)+1]M

(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε) log[a−1]M
(
exp[b−1] r, g

)
.

Then it follows from (3.17) and (3.20) that, for all sufficiently large
r ∈ R+,
(3.21)

log[(p−1)+n−2
2

(p−b)+1]M
(
exp[b−1] r, fn

)
6 (ρf (p, q) + ε) r(ρg(a,b)+ε).



Iterated Entire Functions and their Growth Properties 197

Case II. a = b = p = q.

We find from the fourth part of Lemma 2.2 that, for all sufficiently
large r ∈ R+,

(3.22)
log[p]M

(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε)
n
2 (ρg (a, b) + ε)

n−2
2 log[a−1]M

(
exp[b−1] r, g

)
.

Then, from (3.17) and (3.22), we obtain that, for all sufficiently large
r ∈ R+,
(3.23)

log[p]M
(
exp[b−1] r, fn

)
6 (ρf (p, q) + ε)

n
2 (ρg (a, b) + ε)

n−2
2 r(ρg(a,b)+ε).

Case III. p > b, q > a and q − a = p− b.

In view of the eighth part of Lemma 2.2, we see that, for all sufficiently
large r ∈ R+,
(3.24)

log[p]M
(
exp[b−1] r, fn

)
6 (ρf (p, q) + ε)

n
2 log[a−1]M

(
exp[b−1] r, g

)
.

Then, (3.17) and (3.24), we have that, for all sufficiently large r ∈ R+,

(3.25) log[p]M
(
exp[b−1] r, fn

)
6 (ρf (p, q) + ε)

n
2 r(ρg(a,b)+ε).

Case IV. p > b, q > a and q − a < p− b.

We obtain from the ninth part of Lemma 2.2 that, for all sufficiently
large r ∈ R+,

(3.26)
log[p

n−2
2

(p+a−b−q)]M
(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε) log[a−1]M
(
exp[b−1] r, g

)
.

Then, from (3.17) and 3.26, we have that, for all sufficiently large
r ∈ R+,
(3.27)

log[p+
n−2
2

(p+a−b−q)]M
(
exp[b−1] r, fn

)
6 (ρf (p, q) + ε) r(ρg(a,b)+ε).

Further, from (3.16), it follows that, for all sufficiently large r ∈ R+,

exp[a−q] log[a]M
(
exp[b−1] r, g

)
6 exp[a−q] log rρg(a,b)+ε.
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That is,

(3.28) exp[a−q] log[a]M
(
exp[b−1] r, g

)
6 exp[a−q−1] rρg(a,b)+ε.

Case V. q < a and b < p.

In view of the first part of Lemma 2.2, we find that, for all sufficiently
large r ∈ R+,

(3.29)
log[(p−1)+n−2

2
(a−q)+n−2

2
(p−b)+1]M

(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε) exp[a−q] log[a]M
(
exp[b−1] r, g

)
.

Then, from (3.28) and (3.29), we find that, for all sufficiently large
r ∈ R+,

log[p+
n−2
2

(a−q)+n−2
2

(p−b)]M
(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε) exp[a−q−1] rρg(a,b)+ε.

That is,

log[p+
n−2
2

(a−q)+n−2
2

(p−b)+1]M
(
exp[b−1] r, fn

)
6 exp[a−q−2] rρg(a,b)+ε.

We thus have

log[p+
n−2
2

(a−q)+n−2
2

(p−b)+a−q−1]M
(
exp[b−1] r, fn

)

6 log[a−q−2] exp[a−q−2] rρg(a,b)+ε.

Or, equivalently,

(3.30) log[p+
n−2
2

(a−q)+n−2
2

(p−b)+a−q−1]M
(
exp[b−1] r, fn

)
6 rρg(a,b)+ε.

Case VI. p = b ≥ q, a > q and n > 2.

It follows from the second part of Lemma 2.2 that, for all sufficiently
large r ∈ R+,
(3.31)

log[p+
n−2
2

(a−q)]M
(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε) (ρg (a, b) + ε) exp[a−q] log[a]M
(
exp[b−1] r, g

)
.
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Then, from (3.28) and (3.31), we have that, for all sufficiently large
r ∈ R+,

log[p+
n−2
2

(a−q)]M
(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε) (ρg (a, b) + ε) exp[a−q−1] rρg(a,b)+ε.

That is,

log[p+
n−2
2

(a−q)+1]M
(
exp[b−1] r, fn

)
6 exp[a−q−2] rρg(a,b)+ε.

We thus have

log[p+
n−2
2

(a−q)+a−q−1]M
(
exp[b−1] r, fn

)
6 log[a−q−2] exp[a−q−2] rρg(a,b)+ε.

Or, equivalently,

(3.32) log[p+
n−2
2

(a−q)+a−q−1]M
(
exp[b−1] r, fn

)
6 rρg(a,b)+ε.

Case VII. p = a > q = b.

In view of the fifth part of Lemma 2.2, we find that, for all sufficiently
large r ∈ R+,

(3.33)
log[p+(n−2)(p−q)]M

(
exp[b−1] r, fn

)

6 (ρf (p, q) + ε) exp[a−q] log[a]M
(
exp[b−1] r, g

)
.

Then, from (3.28) and (3.33), we have that, for all sufficiently large
r ∈ R+,

log[p+(n−2)(p−q)]M
(
exp[b−1] r, fn

)
≤ (ρf (p, q) + ε) exp[a−q−1] rρg(a,b)+ε.

That is,

log[p+(n−2)(p−q)+1]M
(
exp[b−1] r, fn

)
6 exp[a−q−2] rρg(a,b)+ε.

We thus have

log[p+(n−2)(p−q)+a−q−1]M
(
exp[b−1] r, fn

)

6 log[a−q−2] exp[a−q−2] rρg(a,b)+ε.

Or, equivalently,

(3.34) log[p+(n−2)(p−q)+a−q−1]M
(
exp[b−1] r, fn

)
6 rρg(a,b)+ε.

Case VIII. p < b, q < a and b− p = a− q.
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It follows from the sixth part of Lemma 2.2 that, for all sufficiently
large r ∈ R+,

(3.35)
log[p+a−q]M

(
exp[b−1] r, fn

)

6 (ρg (a, b) + ε)
n−2
2 exp[a−q] log[a]M

(
exp[b−1] r, g

)
.

Then, from (3.28) and (3.24), we get that, for all sufficiently large
r ∈ R+,

log[p+a−q]M
(
exp[b−1] r, fn

)
≤ (ρg (a, b) + ε)

n−2
2 exp[a−q−1] rρg(a,b)+ε.

That is,

log[p+a−q+1]M
(
exp[b−1] r, fn

)
6 exp[a−q−2] rρg(a,b)+ε.

We thus have

log[p+a−q+a−q−1]M
(
exp[b−1] r, fn

)
6 log[a−q−2] exp[a−q−2] rρg(a,b)+ε.

Or, equivalently,

(3.36) log[p+2a−2q−1]M
(
exp[b−1] r, fn

)
6 rρg(a,b)+ε.

Case IX. p < b, q < a and b− p < a− q.

We find from the seventh part of Lemma 2.2 that, for all sufficiently
large r ∈ R+,

(3.37)
log[p+a+n−2

2
(a−b)−q]M

(
exp[b−1] r, fn

)

6 exp[a−q] log[a]M
(
exp[b−1] r, g

)
.

Then, from (3.28) and (3.37), we have that, for all sufficiently large
r ∈ R+,

log[p+a+n−2
2

(a−b)−q]M
(
exp[b−1] r, fn

)
≤ exp[a−q−1] rρg(a,b)+ε.

That is,

log[p+a+n−2
2

(a−b)−q+1]M
(
exp[b−1] r, fn

)
6 exp[a−q−2] rρg(a,b)+ε.

We thus have

log[p+a+n−2
2

(a−b)−q+a−q−1]M
(
exp[b−1] r, fn

)

6 log[a−q−2] exp[a−q−2] rρg(a,b)+ε.
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Or, equivalently,

(3.38) log[p+a+n−2
2

(a−b)−q+a−q−1]M
(
exp[b−1] r, fn

)
6 rρg(a,b)+ε.

Now, combining (3.21) and (3.19), we get that, for all sufficiently
large r ∈ R+,

(3.39)
log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(p−b)]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

(ρf (p, q) + ε) r(ρg(a,b)+ε)
.

Then, in view of (3.15), it follows from (3.39) that

lim inf
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(p−b)] M
(
exp[b−1] r, fn

) = ∞.

Therefore

lim sup
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(p−b)]M
(
exp[b−1] r, fn

) = ∞.

We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(p−b)]M
(
exp[b−1] r, fn

) = ∞.

That is,

lim
r→∞

log[p+
n−2
2

(p−b)]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

This proves the first part of the theorem.

Similarly, combining (3.15), (3.23) of Case II and (3.19), we obtain
that, for all sufficiently large values of r,

log[p−1]M(exp[q−1] r, f)

log[p]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

(ρf (p, q) + ε)
n
2 (ρg (a, b) + ε)

n−2
2 r(ρg(a,b)+ε)

,

from which we find

lim inf
r→∞

log[p−1]M(exp[q−1] r, f)

log[p]M
(
exp[b−1] r, fn

) = ∞.

We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p]M
(
exp[b−1] r, fn

) = ∞.
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Or, equivalently,

(3.40) lim
r→∞

log[p]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

Further combining (3.25) of Case III and (3.19), in view of (3.15), we
see that, for all sufficiently large values of r,

log[p−1]M(exp[q−1] r, f)

log[p]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

(ρf (p, q) + ε)
n
2 r(ρg(a,b)+ε)

,

from which we have

lim inf
r→∞

log[p−1]M(exp[q−1] r, f)

log[p]M
(
exp[b−1] r, fn

) = ∞.

We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p]M
(
exp[b−1] r, fn

) = ∞.

Or, equivalently,

(3.41) lim
r→∞

log[p]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

Hence the second part of the theorem is easily seen to follow from
(3.40) and (3.41).

Again combining (3.27) of Case IV and (3.19), we get that, for all
sufficiently large values of r,
(3.42)

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(p+a−b−q)]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

(ρf (p, q) + ε) r(ρg(a,b)+ε)
.

Therefore, in view of (3.15), we find from (3.42) that

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(p+a−b−q)]M
(
exp[b−1] r, fn

) = ∞,

from which we have

lim
r→∞

log[p+
n−2
2

(p+a−b−q)]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

This proves the third part of the theorem.
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Similarly, combining (3.30) of Case V and (3.19), in view of (3.15),
we obtain that, for all sufficiently large values of r,

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(a−q)+n−2
2

(p−b)+a−q−1]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

rρg(a,b)+ε
.

We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(a−q)+n−2
2

(p−b)+a−q−1]M
(
exp[b−1] r, fn

) = ∞.

Or, equivalently,

lim
r→∞

log[p+
n−2
2

(a−q)+n−2
2

(p−b)+a−q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

This establishes the fourth part of the theorem.

Analogously, in view of (3.15), (3.32) of Case VI and (3.19), we find
that, for all sufficiently large values of r,

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(a−q)+a−q−1]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

rρg(a,b)+ε
.

We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+
n−2
2

(a−q)+a−q−1]M
(
exp[b−1] r, fn

) = ∞.

Or, equivalently,

lim
r→∞

log[p+
n−2
2

(a−q)+a−q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

Hence the fifth part of the theorem is proved.

Again, combining (3.15), (3.34) of Case VII and (3.19), we obtain
that, for all sufficiently large values of r,

log[p−1]M(exp[q−1] r, f)

log[p+(n−2)(p−q)+a−q−1]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

rρg(a,b)+ε
,

from which we find

lim inf
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+(n−2)(p−q)+a−q−1]M
(
exp[b−1] r, fn

) = ∞.
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We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+(n−2)(p−q)+a−q−1]M
(
exp[b−1] r, fn

) = ∞.

Or, equivalently,

lim
r→∞

log[p+(n−2)(p−q)+a−q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

This proves the sixth part of the theorem.

Further in view of (3.15), (3.36) of Case VIII and (3.19), we get that,
for all sufficiently large values of r,

log[p−1]M(exp[q−1] r, f)

log[p+2a−2q−1]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

rρg(a,b)+ε
.

We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+2a−2q−1]M
(
exp[b−1] r, fn

) = ∞.

Or, equivalently,

lim
r→∞

log[p+2a−2q−1]M
(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

This proves the seventh part of the theorem.

Similarly, combining (3.15), (3.38) of Case IX and (3.19), we find
that, for all sufficiently large values of r,

log[p−1]M(exp[q−1] r, f)

log[p+a+n−2
2

(a−b)−q+a−q−1]M
(
exp[b−1] r, fn

) ≥ r(λf (p,q)−ε)

rρg(a,b)+ε
.

We thus have

lim
r→∞

log[p−1]M(exp[q−1] r, f)

log[p+a+n−2
2

(a−b)−q+a−q−1]M
(
exp[b−1] r, fn

) = ∞.

Or, equivalently,

lim
r→∞

log[(p−q)+(a+b)+n
2
(a−b)−(q+1)]M

(
exp[b−1] r, fn

)

log[p−1]M(exp[q−1] r, f)
= 0.

This establishes the eighth part of the theorem.
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Remark 3.12. An account of the conditions in Theorem 3.11 is
given.

(i) The condition ρg (a, b) < λf (p, q) in Theorem 3.11 being essential
can be shown by letting f = g = exp z, p = a = n = 2 and
q = b = 1. Then we have

ρg(a, b) = λf (p, q) = ρf (p, q) = 1.

We also see that

logM(r, exp[2] z) ≥ T (r, exp[2] z) +O(1) ∼ exp (r)

(2π3r)
1
2

+O(1) (r → ∞)

and

logM(r, f) = logM(r, exp z) = r.

We thus have

lim
r→∞

log[p+m−q−1]M
(
exp[n−1] r, f ◦ g)

log[p−1]M(exp[q−1] r, f)
= lim

r→∞
log[2]M (r, f ◦ g)

logM(r, f)

≥ lim
r→∞

r − log r +O(1)

r
= 1 6= 0,

which is contrary to the results in Theorem 3.11.

(ii) The results in Theorem 3.11 remain valid with use of limit inferior
instead of limit and the condition ρg(a, b) < λf (p, q) ≤ ρf (p, q) <
∞ replaced by λg(a, b) < λf (p, q) ≤ ρf (p, q) < ∞. Here the
condition λg (a, b) < λf (p, q) is also essential as easily shown in
the case: f = g = exp z, p = a = n = 2 and q = b = 1.

In line with the results in Theorem 3.11, we present the following
statements without their proof.

Theorem 3.13. Let f and g be any two entire functions such that
ρf (p, q) < λg(a, b) ≤ ρg(a, b) < ∞ where a, b, p, q ∈ N with a ≥ b and
p ≥ q. Then each of the following statements holds true: For any odd
n ∈ N \ {1},

(i) (p > b, q = a)

lim
r→∞

log[(p−1)+n−3
2

(p−b)+1]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0;
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(ii) (a = b = p = q) or (p > b, q > a, q − a = p− b)

lim
r→∞

log[p]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0;

(iii) (p > b, q > a, q − a < p− b)

lim
r→∞

log[p+
n−1
2

(p+a−b−q)]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0;

(iv) (q < a, b < p)

lim
r→∞

log[2p+
n−1
2

(a−q)+n−2
2

(p−b)−b−1]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0;

(v) (p = b ≥ q, a > q)

lim
r→∞

log[2p+
n−1
2

(a−q)−b−1]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0;

(vi) (p = a > q = b)

lim
r→∞

log[2p+(n−2)(p−q)−b−1]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0;

(vii) (p < b, q < a, b− p = a− q)

lim
r→∞

log[2p+a−q−b−1]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0;

(viii) (p < b, q < a, b− p < a− q)

lim
r→∞

log[2p+a+n−3
2

(a−b)−q−b−1]M
(
exp[q−1] r, fn

)

log[a−1]M(exp[b−1] r, g)
= 0.

Remark 3.14. The results in Theorem 3.13 remain valid with use
of limit inferior instead of limit and the condition ρf (p, q) < λg(a, b) ≤
ρg(a, b) < ∞ replaced by λf (p, q) < λg(a, b) ≤ ρg(a, b) < ∞.
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Theorem 3.15. Let f and g be any two entire functions such that
λf (p, q) ≤ ρf (p, q) < ∞ and ρg(a, b) < ∞ where a, b, p, q ∈ N with
a ≥ b and p ≥ q. Then each of the following statements holds true: For
any even n ∈ N,

(i) (p > b, q = a)

lim sup
r→∞

log[p+
n−2
2

(p−b)+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
= 0;

(ii) (a = b = p = q) or (p > b, q > a, q − a = p− b)

lim sup
r→∞

log[p+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
;

(iii) (p > b, q > a, q − a < p− b)

lim sup
r→∞

log[p+
n−2
2

(p+a−b−q)+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
;

(iv) (q < a, b < p)

lim sup
r→∞

log[p+
n−2
2

(a−q)+n−2
2

(p−b)+a−q]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
;

(v) (p = b ≥ q, a > q, n > 2)

lim sup
r→∞

log[p+
n−2
2

(a−q)+a−q]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
;

(vi) (p = a > q = b)

lim sup
r→∞

log[p+(n−2)(p−q)+a−q]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
;

(vii) (p < b, q < a, b− p = a− q)

lim sup
r→∞

log[p+2a−2q]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
;
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(viii) (p < b, q < a, b− p < a− q)

lim sup
r→∞

log[p+a+n−2
2

(a−b)−q+a−q]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
.

Proof. For (i), let p > b and q = a. It follows from (3.21) that, for all
sufficiently large values of r,
(3.43)

log[p+
n−2
2

(p−b)+1]M
(
exp[b−1] r, fn

)
6 (ρg(a, b) + ε) log r +Al (r) .

Then, combining (3.18) and (3.43), we find that, for all sufficiently large
values of r,

log[p+
n−2
2

(p−b)+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ (ρg(a, b) + ε) log r +Al (r)

(λf (p, q)− ε) log r
,

from which we have

lim sup
r→∞

log[p+
n−2
2

(p−b)+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
.

This proves the first part of the theorem.

For (ii), we first suppose that a = b = p = q. Then, from (3.18) and
(3.23), we obtain that, for all sufficiently large values of r,

log[p+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ (ρg(a, b) + ε) log r +Al (r)

(λf (p, q)− ε) log r
,

from which we find

(3.44) lim sup
r→∞

log[p+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
.

We next assume that p > b, q > a and q − a = p− b. Then, combining
(3.18) and (3.25), we have that, for all sufficiently large values of r,

log[p+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ (ρg(a, b) + ε) log r +Al (r)

(λf (p, q)− ε) log r
,

from which we obtain

(3.45) lim sup
r→∞

log[p+1]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
≤ ρg(a, b)

λf (p, q)
.

Hence the second part of the theorem is seen to follow from (3.44) and
(3.45).
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A similar argument as in the proof of (i) and (ii) will prove the re-
maining parts (iii) to (viii) by considering (3.27), (3.30), (3.32), (3.34),
(3.36), and (3.38), respectively, with the help of the inequality (3.18).
The detailed account of their proofs is omitted.

Remark 3.16. Some comments related to Theorem 3.15 are given:

(i) The condition ρg(a, b) < ∞ in Theorem 3.15 is necessary as shown

in the following example: Let f = exp z, g = exp[2] z and p = a =
n = 2, and q = b = 1. Then we have

λf (p, q) = ρf (p, q) = 1 and ρg(a, b) = ∞.

Also we see

log[3]M(r, f ◦ g) = log[3] exp[3] r = r,

from which we have

log[2]M(r, f) = log r.

We thus have

lim sup
r→∞

log[p+(n−2)(p−q)+a−q]M
(
exp[b−1] r, fn

)

log[p]M(exp[q−1] r, f)
= lim sup

r→∞
log[3]M(r, f ◦ g)
log[2]M(r, f)

= lim sup
r→∞

r

log r
= ∞.

(ii) The results in Theorem 3.15 remain valid with use of limit inferior
instead of limit superior and ρg(a, b) replaced by λg(a, b). Here
the condition λg(a, b) < ∞ is required, which can be easily seen

by taking f = exp z, g = exp[2] z, p = a = n = 2, and q = b = 1.

We conclude this paper by giving one more theorem.

Theorem 3.17. Let f and g be any two entire functions such that
λg(a, b) ≤ ρg(a, b) < ∞ and ρf (p, q) < ∞ where a, b, p, q ∈ N with a ≥ b
and p ≥ q. Then each of the following statements holds true: For any
odd n ∈ N \ {1},

(i) (p > b, q = a)

lim sup
r→∞

log[p+
n−3
2

(p−b)+1]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
≤ ρf (p, q)

λg(a, b)
;
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(ii) (a = b = p = q or (p > b, q > a, q − a = p− b)

lim sup
r→∞

log[p+1]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
≤ ρf (p, q)

λg(a, b)
;

(iii) (p > b, q > a, q − a < p− b)

lim sup
r→∞

log[p+
n−1
2

(p+a−b−q)+1]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
≤ ρf (p, q)

λg(a, b)
;

(iv) (q < a, b < p)

lim sup
r→∞

log[2p+
n−1
2

(a−q)+n−2
2

(p−b)−b]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
≤ ρf (p, q)

λg(a, b)
;

(v) (p = b ≥ q, a > q)

lim sup
r→∞

log[2p+
n−1
2

(a−q)−b]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
≤ ρf (p, q)

λg(a, b)
;

(vi) (p = a > q = b)

lim sup
r→∞

log[2p+(n−2)(p−q)−b]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
=

ρf (p, q)

λg(a, b)
;

(vii) (p < b, q < a, b− p = a− q)

lim sup
r→∞

log[2p+a−q−b]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
≤ ρf (p, q)

λg(a, b)
;

(viii) (p < b, q < a, b− p < a− q)

lim sup
r→∞

log[2p+a+n−3
2

(a−b)−q−b]M
(
exp[q−1] r, fn

)

log[a]M(exp[b−1] r, g)
≤ ρf (p, q)

λg(a, b)
.

Proof. A similar argument as in the proof of previous theorems will
prove the statements here. So the details of proof are omitted.

Remark 3.18. The results in Theorem 3.17 in which limit inferior
is used in place of limit superior are seen to remain valid with ρf (p, q)
replaced by λf (p, q) and the other conditions unaltered.
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