DOI QR코드

DOI QR Code

Analysis of the Polymer Properties and Sound Characteristics of Interlayer Films for Laminated Glass

접합유리용 고분자 필름의 물성 및 음향학적 특성 분석

  • Ko, Sangwon (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Hong, Jiyoung (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Sunwoo, Yerim (School of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Young Jun (School of Chemical Engineering, Sungkyunkwan University)
  • Received : 2014.11.13
  • Accepted : 2016.01.04
  • Published : 2016.02.29

Abstract

To improve the sound insulation performance of laminated glass in high speed trains, it is beneficial to study the relationship between the characteristics of interlayer films and the acoustical performance. In addition to those of conventional PVB (polyvinyl butyral), the dynamic mechanical properties of PVB derivatives and PC (polycarbonate), which are candidates for interlayer films, were analyzed. We assumed that PVB-HEMU, which has a glass transition temperature ($T_g$) around room temperature and a large tan ${\delta}$ (loss tangent) value, can be made to damp efficiently. The damping capability was tested utilizing sound transmission loss measurement and simulation under the identical structure of laminated glass in high speed trains. We also built a database for analysis of relations between interlayer film characteristics and acoustical performance; this was followed by the determination of sound transmission loss using the intensity technique and FEA.

본 논문은 고속열차 객실 내 유리창의 차음 성능을 향상시키기 위한 기반연구로, 접합유리에 사용되는 고분자 필름의 물성과 음향학적 특성을 분석하여 그 상관관계를 살펴보고자 하였다. 기존에 사용되고 있는 PVB(polyvinyl butyal) 필름 및 다른 단량체 비율을 가지는 PVB 유도체, 그리고 유리 사이 차음재로 사용가능 한 PC(polycarbonate)의 동적기계적 특성을 분석(DMA)하였다. DMA 분석을 통해 상온에 가까운 온도범위에서 유리전이온도($T_g$)를 가지며 tan ${\delta}$(loss tangent) 값이 큰 것으로 나타난 PVB-HEMU 시편의 댐핑(damping) 성능이 가장 우수할 것으로 예측하고, 이를 고속철도 차량의 접합유리창과 동일한 구조에서의 투과손실 시험과 해석을 통해 검증하고자 하였다. 접합필름의 종류에 따른 유리창 투과손실 값을 투과손실 측정(인텐시티법)과 FE 해석을 이용해 도출하고, 고분자 필름의 물성과 음향성능 간 상관관계 분석을 위한 기초자료를 구축하였다.

Keywords

References

  1. S. Jang, J. Ryue (2013) Study on the rolling noise model using an analysis of wheel and rail vibration characteristics, Journal of the Korean Society for Railway, 16(3), pp. 175-182. https://doi.org/10.7782/JKSR.2013.16.3.175
  2. K. Kim, J. Park (2001) Interior noise prediction of the Korean high speed train using sound source contribution analysis and sensitivity analysis of wall's transmission loss, Proceedings of the Korean Society for Noise and Vibration Engineering Conference, Yong Pyong, pp. 1093-1098.
  3. S. Kim, H. Lee, J. Kim (2012) Sound insulation strategy for the tunnel noise in a high speed train, Journal of the Korean Society for Railway, 15(4), pp. 315-322. https://doi.org/10.7782/JKSR.2012.15.4.315
  4. J. Lu (2002) Passenger vehicle interior noise reduction by laminated side glass, Proceedings of Internoise 2002, Detroit, MI.
  5. J.D. Ferry (1980) Viscoelastic properties of polymers, John Wiley, NY, pp. 437-453.
  6. L.H. Sperling, J.J. Fay (1990) Factors which affect the glass transition and damping capability of polymers, Polymers for Advanced Technologies, 2, pp. 49-56.
  7. E. Kerwin (1959) Damping of flexural waves by a constrained viscoelastic layer, The Journal of Acoustical Society of America, 31, pp. 952-962. https://doi.org/10.1121/1.1907821
  8. W. Zeng, S. Li (2002) Effect of components (acrynitril and acrylate acid) on damping properties of poly(styrene-acrynitril)/poly(ethylacetate-n-butylacrylate) latex interpenetrating polymer networks, Journal of Applied Polymer Science, 84(4), pp. 821-826. https://doi.org/10.1002/app.10350
  9. D. Ratna, N.R. Manoj, L. Chandrasekhar, B.C. Chakraborty (2004) Novel epoxy compositions for vibration damping applications, Polymers for Advanced Technologies, 15, pp. 583-586. https://doi.org/10.1002/pat.513
  10. C. Li, G. Wu, F. Xiao, C. Wu (2007) Damping behavior of sandwich beam laminated with CIIR/petroleum resins blends by DMA measurement, Journal of Applied Polymer Science, 106, pp. 2472-2478. https://doi.org/10.1002/app.25450
  11. F.J. Fahy, P. Gardonio (2007) Sound and structural vibration: radiation, transmission and response, Academic press, Oxford, pp. 143-144.

Cited by

  1. A Study on the Real-time Optimization Technique for a Train Velocity Profile vol.17, pp.8, 2016, https://doi.org/10.5762/KAIS.2016.17.8.344