DOI QR코드

DOI QR Code

New Experimental Investigation of Magnetic and Electric Fields in the Vicinity of High-Voltage Power Lines

  • Ghnimi, Said (Sciences Faculty of Tunis, university Tunis El Manar) ;
  • Rajhi, Adnen (Higher School of Technology and Computer Science, University of Carthage) ;
  • Gharsallah, Ali (Sciences Faculty of Tunis, university Tunis El Manar)
  • Received : 2015.11.09
  • Accepted : 2015.12.22
  • Published : 2016.03.31

Abstract

In this paper, the theoretical and experimental characteristics of magnetic and electric fields in the vicinity of high voltage lines are investigated. To realize these measurements and calculations, we have developed some equations for two overhead power line configurations of 150 kV (single circuit, double circuit), based on Biot-savart law, image and Maxwell theories, in order to calculate the magnetic and electric fields. The measurements were done to a maximum distance from the tower of 50 m, at a height of 1m from the ground. These experiments take into consideration the real situations of the power lines and associated equipment. The experimental results obtained are near to that of the Biot-Savart theoretical results for a far distance from the tower; and for a distance close to the power line, the results from the image theory are in good agreement with the experimental results.

Keywords

References

  1. G. Kulkarni and W. Z. Gandhare, ACEEE Int. J. on Electrical and Power Engineering 3, 28 (2012).
  2. D. Djalel and M. Mourad, Journal of Electrical and Electronic Engineering 2, 1 (2014). https://doi.org/10.11648/j.jeee.20140201.11
  3. B. A. Rachedi, A. Babouri, A. Lemzadmi, M. Nemamcha, and F. Berrouk, IEEE International Conference on Intelligent Energy and Power Systems 36 (2014).
  4. S. Ghnimi, A. Rajhi, A. Gharsallah, and F. Khlifa, Am. J. Appl. Sci. 8, 499 (2011). https://doi.org/10.3844/ajassp.2011.499.507
  5. G. Duyan, X. Guizhi, Y. Hongli, Y. Shuo, Y. Qingxin, and Y. Weili, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Canada. 1331 (2008).
  6. L. Xiao and K. E. Holbert, IEEE North American Power Symposium (NAPS). 1 (2014).
  7. M. Milutinov, A. Juhas, and M. Prsa, 2nd International Conference on Moderen Power Systems MPS, Romania. 313 (2008).
  8. J. J. Laforest, Transmission line reference Book 345 kV and above, Electric Power Research Institute (1982) pp. 329-417.
  9. R. G. Olsen, D. Deno, and R. S. Baishiki, IEEE Trans. Power Del. 3, 2127 (1988). https://doi.org/10.1109/61.194025
  10. R. G. Olsen and T. A. Pankaskie, IEEE Trans. Power App. Syst. 102, 769 (1983).
  11. R. G. Olsen and P. S. Wong, IEEE Trans. Power Del. 7, 2046 (1992). https://doi.org/10.1109/61.157008
  12. G. Filippopoulos and D. Tsanakas, IEEE Trans. Power Del. 20, 1474 (2005). https://doi.org/10.1109/TPWRD.2004.839184
  13. E. Salinas, Proc. 5th Int. Power Engineering Conf., Singapore. 325 (2001).
  14. D. Tsanakas, E. Mimos, and A. Tzinevrakis, International Conference on Energy & Environmental Systems, Greece 237 (2006).
  15. P. Pettersson, IEEE Trans. Power Del. 11, 1587 (1996). https://doi.org/10.1109/61.517520
  16. C. Garrido, A. F. Otero, and J. Cidras, IEEE Trans. Power Del. 18, 1310 (2003). https://doi.org/10.1109/TPWRD.2003.817744
  17. R. G. Olsen, D. Deno, and R. S. Baishiki, IEEE Trans. Power Del. 3, 2127 (1988). https://doi.org/10.1109/61.194025
  18. R. G. Olsen and T. A. Pankaskie, IEEE Trans. Power App. Syst. 102, 769 (1983).
  19. A. A. Dahab, F. K. Amoura, and W. S. Abu-Elhaiga, IEEE Trans. Power Del. 20, 2114 (2005). https://doi.org/10.1109/TPWRD.2005.848720
  20. F. P. Dawalibi, IEEE Trans. Power Delivery 8, 1285 (1993). https://doi.org/10.1109/61.252654
  21. P. S. Maruvada, A. Turgeon, D. L. Guolet, and C. U. Cardinal, IEEE Trans. Power Delivery 13, 1322 (1998). https://doi.org/10.1109/61.714503
  22. A. O. Sougui and M. Z. Jenu, IEEE Asia-Pacific Conference on Applied Electromagnetics, Malaysia 207 (2014).
  23. T. Lisewski and J. Luszcz, International Symposium on Electromagnetic Compatibility, Sweden. 360 (2014).
  24. P. S. Maruvada, A. Turgeon, D. L. Guolet, and C. U. Cardinal, IEEE Trans. Power Delivery. 13, 1328 (1998). https://doi.org/10.1109/61.714504
  25. M. Misakian, IEEE International Symposium on Electromagnetic Compatibility. 150 (1993).
  26. A. S. Farag, M. M. Dawoud, T. C. Cheng, and J. S. Cheng, Elect. Power Syst. Res. 48, 151 (1999). https://doi.org/10.1016/S0378-7796(98)00086-8
  27. W. E. Feero, J. Yontz, and J. H. Dunlap, IEEE Trans. Power Del. 4, 1862 (1989). https://doi.org/10.1109/61.32683
  28. W. K. Daily and F. Dawalibi, IEEE Trans. Power Del. 9, 324 (1994).
  29. A. Safigianni and C. G. Tsompanidou, IEEE Trans. Power Del. 20, 1800 (2005). https://doi.org/10.1109/TPWRD.2005.848659
  30. A. Safigianni and C. G. Tsompanidou, IEEE Trans. Power Del. 24, 38 (2009). https://doi.org/10.1109/TPWRD.2008.917690
  31. B. Jaekel, Proc. Int. Wroclaw Symp. Electromagnetic Compatibility, Poland 133 (1998).
  32. W. T. Kaune and L. E. Zaffanella, IEEE Trans. Power Del. 7, 2082 (1992). https://doi.org/10.1109/61.157011
  33. H. Ahmad, N. A. Ahmad, and M. I. Jambak, Proceedings of the XIVth International Symposium on High Voltage Engineering, China. 1 (2005).
  34. G. Petrovic, T. Kilic, and T. Garma, Elektronika ir Elektrotechnika 19, 33 (2013).
  35. N. H. Malik, IEEE Trans. Electrical Insulation 24, 3 (1989). https://doi.org/10.1109/14.19861