DOI QR코드

DOI QR Code

Effects of Contrast Agent Concentration on the Signal Intensity and Turbo Factor of TSE and Slice-selective IR in T1-weighted Contrast Imaging

  • Han, Yong Soo (Department of Radiology, Dongguk University Ilsan Medical Center) ;
  • Lee, Soo Chul (Department of Radiology, Dongguk University Ilsan Medical Center) ;
  • Lee, Dong Yong (Department of Radiology, Dongguk University Ilsan Medical Center) ;
  • Choi, Jiwon (Department of Radiological Science, Jeonju University) ;
  • Lee, Jong Woong (Department of Radiology, Kyung Hee University Hospital at Gang-dong) ;
  • Kweon, Dae Cheol (Department of Radiologic Science, Shinhan University)
  • Received : 2015.09.03
  • Accepted : 2016.01.05
  • Published : 2016.03.31

Abstract

The present study analyzes T1 TSE and T1 slice sel. IR (dark_fluid) signal strength according to the degree of gadolinium contrast agent dilution and analyzes the turbo factors with regard to changes in the maximum and overall signal strength to study correlations between changes and signal-to-noise ratios (SNRs) and compare peak-to-peak SNR (PSNR) enhancement in order to improve the quality of T1-weighted images. Enhancement TR (600 msec) evaluated to determine the T1 TSE turbo factor and obtain the maximum signal strength, T1WI were used sequentially to experiment with turbo factors_1-4. T1 slice sel. IR (dark-fluid) was used to sequentially test turbo factors_2-5 but not turbo factor_1 at a TR (1500 msec) and compare data at an increase in T1 of 900 msec. The T1 TSE was reduced according to the contrast agent concentration. Phantom signal strength increased, whereas turbo factors_1-4 exhibited maximum signal strength at a concentration of 3 mmol, followed by a gradual decrease. In the turbo factors_2-5, the signal strength increased sharply to maximum signal strength at 0.7 mmol, followed by a reduction. T1 TSE had a greater maximum signal strength than did T1 slice sel. IR (dark_fluid). A comparison of SNR found that T1 TSE imaging was superior (33.3 dB) in turbo factor_1 and T1 slice sel. IR (dark_fluid) was highest (33.9 dB) at turbo factor_5. A PSNR comparison analysis was not sufficient to distinguish between the images obtained with both techniques at 30 dB or higher under all experimental conditions.

Keywords

References

  1. J. Masuda, T. Nabika, and Y. Notsu, Curr. Opin. Neurol. 14, 77 (2001). https://doi.org/10.1097/00019052-200102000-00012
  2. W. D. Taylor, M. E. Payne, K. R. Krishnan, H. R. Wagner, J. M. Provenzale, D. C. Steffens, and J. R. MacFall, Biol. Psychiatry 50, 179 (2001). https://doi.org/10.1016/S0006-3223(01)01160-X
  3. K. R. Krishnan, Am. Heart J. 140, 70 (2000). https://doi.org/10.1067/mhj.2000.109980
  4. J. H. Choi, S. M. Lim, and Y. Kim, J. Korean Radiol. Soc. 64, 317 (2011). https://doi.org/10.3348/jksr.2011.64.4.317
  5. B. J. Park, M. G. Kim, S. I. Suh, S. J. Hong, K. R. Cho, B. K. Seo, K. Y. Lee, N. J. Lee, and J. H. Kim, J. Korean Med. 44, 317 (2001).
  6. K. W. Choi, S. Y. Son, T. H. Kim, M. S. Han, J. H. Lee, and J. W. Min, J. Korean Radiol. Soc. 14, 1294 (2013).
  7. F. A. Jolesz, Diagn. Imaging 6, 78 (1992).
  8. M. H. Cho, S. Y. Lee, C. W. Mun, H. H. Cho, W. Yi, and W. M. Choi, J. Biomed. Eng. Res. 19, 91 (1998).
  9. S. W. Atlas, R. I. Grossman, D. B. Hackney, H. I. Goldberg, L. T. Bilaniuk, and R. A. Zimmerman, Am. J. Roentgenol. 151, 1515 (1988).
  10. K. M. Jones, R. B. Schwarts, M. T. Mantello, S. S. Ahn, R. Khorasani, S. Mukherji, K. Oshio, and R. V. Mulkern, Am. J. Neuroradiol. 15, 401 (1994).
  11. L. J. Wolnsky, A. Evans, K. Belitsis, P. D. Shaderowfsky, R. Gonzales, J. A. Maldjian, H. J. Lee, and J. Pak, Clin. Imaging 20, 164 (1996). https://doi.org/10.1016/0899-7071(96)00015-0
  12. G. M. Bydder and I. R. Young, J. Comput. Assist. Tomogr. 9, 659 (1985). https://doi.org/10.1097/00004728-198507010-00002
  13. R. C. Smith, R. T. Contrast, C. Reinhol, T. McCauley, R. C. Lange, and S. McCarthy, Comput. Assist. Tomogr. 18, 209 (1994). https://doi.org/10.1097/00004728-199403000-00007
  14. D. P. Mueller, W. T. Yuh, D. J. Fisher, K. B. Chandran, M. R. Crain, and Y. H. Kim, Am. J. Neuroradiol. 14, 66 (1993).
  15. K. Peldschus, M. Handorf, P. Robert, M. Port, G. Adam, and C. U. Herborn, J. Magn. Reson. Imaging 32, 459 (2010). https://doi.org/10.1002/jmri.22261
  16. A. W. Winfried, Eur. J. Radiol. 65, 2 (2008). https://doi.org/10.1016/j.ejrad.2007.11.006
  17. M. Goyen, T. C. Lauenstein, C. U. Herborn, J. F. Debatin, S. Bosk, and S. G. Ruehm, J. Magn. Reson. Imaging 14, 602 (2001). https://doi.org/10.1002/jmri.1225
  18. S. Haneder, U. Attenberger, S. O. Schoenberg, C. Loewe, J. Arnaiz, H. J. Michaely, D. E. Mannheim, A. T. Vienna, and E. S. Santander, Eur. Congress Radiol. C1016 (2011).

Cited by

  1. Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery vol.26, pp.3, 2016, https://doi.org/10.4283/JKMS.2016.26.3.092
  2. Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta vol.26, pp.4, 2016, https://doi.org/10.4283/JKMS.2016.26.4.142
  3. Measurement of MRI Monitor Luminance and MRI Room Illuminance with a Light Probe vol.26, pp.5, 2016, https://doi.org/10.4283/JKMS.2016.26.5.168