DOI QR코드

DOI QR Code

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei (School of Nano Materials Engineering, Kyungpook National University) ;
  • Park, Sang-Shik (School of Nano Materials Engineering, Kyungpook National University)
  • Received : 2016.02.03
  • Accepted : 2016.02.25
  • Published : 2016.03.27

Abstract

To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.

Keywords

References

  1. R. S. Alwitt, H. Uchi, T. R. Beck and R. C. Alkire, J. Electrochem. Soc., 131, 13 (1984). https://doi.org/10.1149/1.2115495
  2. H. Takahashi and M. Nagayama, Electrochim. Acta., 23, 279 (1978). https://doi.org/10.1016/0013-4686(78)85058-0
  3. C. T. Chen and G. A. Hutchins, J. Electrochem. Soc., 132, 1567 (1985). https://doi.org/10.1149/1.2114166
  4. R. L. Chiu, P. H. Chang and C. H. Tung, Thin Solid Films, 260, 47 (1995). https://doi.org/10.1016/0040-6090(94)06491-1
  5. J. K. Chang, C. M. Lin, C. M. Liao, C. H. Chen, and W. T. Tsai, J. Electrochem. Soc., 151, B188 (2004). https://doi.org/10.1149/1.1646140
  6. C. L. Ban, Y. D. He and X. Shao, Trans. Nonferrous Met. Soc. China, 21, 133 (2011). https://doi.org/10.1016/S1003-6326(11)60689-4
  7. S. S. Park and B. T. Lee, J. Electroceram., 13, 111 (2004). https://doi.org/10.1007/s10832-004-5085-z
  8. M. Sunada, H. Takahashi, T. Kikuchi, M. Sakairi and S. Hirai, J. Solid State Electrochem., 11, 1375 (2007). https://doi.org/10.1007/s10008-007-0316-2
  9. Y. H. Wang, J. Yang and J. Z. Wang, Ceram. Int., 34, 1285 (2008). https://doi.org/10.1016/j.ceramint.2007.03.004
  10. X. Du and Y. Xu, Surf. Coat. Technol., 202, 1923 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.020
  11. J. Liu, Q. Guo, M. Yu, S. Li and L. Yao, ECS J. Solid state Sci. Technol., 2, N55 (2013).
  12. F. Chen and S. S. Park, ECS J. Solid state Sci. Technol., 4, P293 (2015). https://doi.org/10.1149/2.0051508jss
  13. H. Uchi, T. Kanno and R. S. Alwitt, J. Electrochem. Soc., 148, B17 (2001). https://doi.org/10.1149/1.1344528
  14. R. S. Alwitt, C. K. Dyer and B. Noble, J. Electrochem. Soc., 129, 711 (1982). https://doi.org/10.1149/1.2123956