DOI QR코드

DOI QR Code

Effects of Acid Modification on Pb(II) and Cu(II) Adsorption of Bamboo-based Activated Carbon

대나무 활성탄의 산 개질이 납과 구리 이온의 흡착에 미치는 영향

  • 이명은 (경남과학기술대학교 도시시스템공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과)
  • Received : 2015.11.26
  • Accepted : 2015.12.14
  • Published : 2016.03.30

Abstract

Effects of acid ($HNO_3$ and HCl) modification on the adsorption properties of Pb(II) and Cu(II) onto bamboo-based activated carbon (BAC) were investigated through a series of batch experiments. The carbon content increased and oxygen content decreased with acid treatment. $HNO_3$ induced carboxylic acids and hydroxyl functional groups while HCl added no functional group onto BAC. The pseudo-second order model better described the kinetics of Pb(II) and Cu(II) adsorption onto experimented adsorbents, indicating that the rate-limiting step of the heavy metal sorption is chemical sorption involving valency forces through sharing or exchange of electrons between the adsorbate and the adsorbent. The equilibrium sorption data followed both Langmuir and Freundlich isotherm models. The adsorption capacities of BAC were affected by the surface functional groups added by acid modification. The adsorption capacities were enhanced up to 36.0% and 27.3% for Pb(II) and Cu(II), respectively by the $HNO_3$ modification, however, negligibly affected by HCl.

질산과 염산에 의한 대나무활성탄(bamboo-based activated carbon, BAC)의 개질이 Pb(II)와 Cu(II)의 흡착특성에 미치는 영향을 규명하기 위해 회분식 흡착실험을 수행하였다. 산 개질에 의해 BAC의 탄소함량은 감소하고 산소함량은 증가하며 pH는 감소하는 것으로 나타났다. 염산에 의한 개질은 BAC에 뚜렷한 표면작용기를 첨가시키지 않았으나 질산에 의한 개질은 카르복실기와 OH 작용기를 첨가시키는 것으로 나타났다. BAC와 산으로 개질된 BAC의 중금속 이온 흡착속도는 2차 속도모델에 의해 적절하게 설명될 수 있는 것으로 나타나 흡착반응의 속도가 물리적 흡착보다는 흡착제와 금속이온들 사이의 전자들의 공유나 교환을 포함하는 화학적 흡착에 의해 결정되는 것으로 나타났다. 실험에 사용된 모든 흡착소재의 등온흡착특성은 Langmuir와 Freundlich 모델에 의해 적절하게 설명될 수 있으며 BAC의 염산에 의한 개질은 중금속 이온의 흡착용량에 큰 영향을 미치지 않으나 표면작용기를 첨가시킨 질산에 의한 개질은 Pb(II)와 Cu(II)의 흡착용량을 각각 36.0%와 27.3% 증가시키는 것으로 나타났다.

Keywords

References

  1. Lee, M., Lee, C. and Chung, J., "Adsorption characteristics of Pb(II) by manganese oxide coated activated carbon in fixed bed column study", Journal of the Korean Geo-Environmental Society, 15(8), pp. 39-44. (2014). https://doi.org/10.14481/JKGES.2014.15.8.39
  2. Liu, Q.-S., Zheng, T., Li, N., Wang, P. and Abulikemu G., "Modification of bamboo-based activated carbon using mirowave radiation and its effects on the adsorption of methylene blue", Applied Surface Science, 256(10), pp. 3309-3315. (2010). https://doi.org/10.1016/j.apsusc.2009.12.025
  3. Lee, S. J., Lee, M. and Chung, J.-W., "Comparison of heavy metal adsorption by manganese oxide-coated activated carbon according to manufacture method", Journal of Korean Society of Environmental Engineers, 36(1), pp. 7-12. (2014). https://doi.org/10.4491/KSEE.2014.36.1.7
  4. Ioannidou, O. and Zabaniotou, A., "Agricultural residues as precursors for activated carbon production-a review", Renewable and Sustainable Energy Reviews, 11(9), pp. 1966-2005. (2007). https://doi.org/10.1016/j.rser.2006.03.013
  5. Bak, Y.-C., Cho, K.-J. and Choi, J.-H., "Production and $CO_2$ adsorption characteristics of activated carbon from bamboo by $CO_2$ activation method", Korean Chemical Engineering Research, 43(1), pp. 146-152. (2005).
  6. Mui, E. L. K., Cheung, W. H., Valix M. and McKay G., Activated carbon from bamboo scaffolding using acid activation, Separation and Purification Technology, Vol. 74, No. 2, pp. 213-218. (2010). https://doi.org/10.1016/j.seppur.2010.06.007
  7. Ghaedi, M., Ansari, A., Habibi, M. H. and Asghari, A. R., "Removal of malachite green from aqeuous solution by zinc oxide nanoparticle loaded on activated carbon: Kinetics and iotherm study", Journal of Industrial and Engineering Chemistry, 20(1), pp. 17-28. (2014). https://doi.org/10.1016/j.jiec.2013.04.031
  8. Lee, M.-E., Park, J. H., Chung, J. W., Lee C.-Y. and Kang S., "Removal of Pb and Cu ions from aqueous solution by $Mn_3O_4$-coated activated carbon", Journal of Industrial and Engineering Chemistry, 21, pp. 470-475. (2015). https://doi.org/10.1016/j.jiec.2014.03.006
  9. Rivera-Utrillia, J., Sanchez-Polo, M., Gomez-Serrano, V., Alvarez, P. M., Alvim-Ferraz, M. C. M. and Dias, J. M., "Activated carbon modifications to enhance its water treatment applications. An overview", Journal of Hazardous Materials, 187(1-3), pp. 1-23. (2011). https://doi.org/10.1016/j.jhazmat.2011.01.033
  10. Ho, Y. S., "Review of second-order models for adsorption systems", Journal of Hazardous Materials, B136, pp. 681-689. (2006).
  11. Liu, Z. and Zhang, F. S., "Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass", Journal of Hazardous Materials, 167(1-3), pp. 933-939. (2009). https://doi.org/10.1016/j.jhazmat.2009.01.085
  12. Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E., "Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products", Journal of Environmental Management, 96(1), pp. 35-42. (2012). https://doi.org/10.1016/j.jenvman.2011.10.010
  13. Chen, B., Zhou, D. and Zhu, L., "Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperature", Environmental Science and Technology, 42(14), pp. 5137-5143. (2008). https://doi.org/10.1021/es8002684
  14. Aksu, Z., "Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead(II) ions onto Chlorella vulgaris", Process Biochemistry, 38(1), pp. 89-99. (2002). https://doi.org/10.1016/S0032-9592(02)00051-1
  15. Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption processes", Process Biochemistry, 34(5), pp. 451-465. (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  16. Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S. and Cho J. S., "Biosorption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida", Korean Journal of Environmental Agriculture, 24(4), pp. 370-378. (2005). https://doi.org/10.5338/KJEA.2005.24.4.370
  17. Weber, J. and Miller, C. T., Organic chemical movement over and through soil, In Sawhney, B. L. and Brown, K.(ed)., Reactions and movement of organic chemical, Soil Science Society of America and American Society of Agnonomy, pp. 305-334. (1989).
  18. Goel, J., Kadirvelu, K., Rajagopal, C. and Garg V. K., "Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies", Journal of Hazardous Materials, 125(1-3), pp. 211-220. (2005). https://doi.org/10.1016/j.jhazmat.2005.05.032
  19. Imamoglu, M. and Tekir, O., "Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks", Desalination, 228(1-3), pp. 108-113. (2008). https://doi.org/10.1016/j.desal.2007.08.011