DOI QR코드

DOI QR Code

A Performance Analysis and Experiments on Plastic Film/Paper Humidifying Elements Consisting of Horizontal Air Channels and Vertical Water Channels

수평 공기 채널과 수직 물 채널로 구성된 플라스틱 필름/종이 가습 소자의 성능

  • Kim, Nae-Hyun (Div. of Mechanical System Engineering, Incheon Nat'l Univ.)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2015.08.19
  • Accepted : 2015.11.29
  • Published : 2016.01.01

Abstract

New materials and shapes for a humidifying element were developed which outperformed the widely used crisscross glass wool Glasdek media design. The new material consists of 50% cellulose and 50% PET. The parallel channel configuration was devised to reduce excessive pressure loss caused by the reduced height (from 7.0 mm to 5.0 mm) of the crisscross configuration. For the same crisscross configuration, the humidification efficiency of the cellulose/PET element was 26% higher than that of the glass wool element. For the same cellulose/PET material, humidification efficiency of the parallel channel configuration was 14% higher than that of the crisscross configuration. As for the pressure drops, the cellulose/PET element was 2-52% higher than those of the glass wool element. For the same cellulose/PET material, the pressure drop of the parallel channel configuration was 14% higher than that of the crisscross configuration. Data were compared against the predictions from existing correlations and those by the proposed model.

본 연구에서는 기존 교차 적층 방식의 유리 섬유 재질 가습소자인 Glasdek의 성능을 능가할 수 있는 새로운 가습소재와 형상을 개발하였다. 개발된 가습소재는 셀룰로오스와 PET가 50%씩 배합된 재질이고 가습 면적을 증가시키기 위하여 절곡 깊이를 7 mm에서 5 mm로 감소시켰다. 이 경우 유발되는 과도한 차압손실을 줄이기 위하여 형상을 수평 채널 방식으로 변화시켰다. 동일 교차 적층 형상에서 셀룰로오스/PET 소자의 가습 효율은 유리섬유 소자의 효율보다 평균 26% 크다. 또한 동일 셀룰로오스/PET 재질에서는 평행 채널 소자의 가습 효율이 교차 적층 소자의 효율보다 평균 14% 크다. 압력손실의 경우는 동일 교차 적층 형상에서 유리섬유 소자의 압력손실이 셀룰로오스/PET 소자의 압력손실보다 2%에서 52% 크다. 또한 동일 셀룰로오스/PET 재질에서 평행 채널 소자의 압력손실이 교차 적층 소자의 압력손실보다 평균 14% 크다. 실험 데이터를 기존 상관식 또는 본 연구에서 개발된 해석 모델과 비교하였다.

Keywords

References

  1. Kim, H. K., Ohm, T. I., Yoon H. K. and Bang, K. Y., 2014, "Numerical Study on the Humidification Efficiency on Humidfying Module Shapes of the Evaporative Humidifier," Korea J. Air-Cond. Ref. Eng., Vol. 25, No.1, pp. 42-47.
  2. Barsegar, M., Layeghi, M., Ebrahimi, G., Hamseh Y. and Khorasani, M., 2012, "Experimental Evaluation of the Performance of Cellulosic Pad Made of Kraft and NSCC Corrugated Papers as Evaporative Media," Energy Conversion and Management, Vol. 54, pp.24-29. https://doi.org/10.1016/j.enconman.2011.09.016
  3. Jain, J. K. and Hindoliya, D. A., 2011, "Experimental Performance of New Evaporative Cooling Pad Materials," Sustainable Cities and Society, Vol. 1, pp. 252-256. https://doi.org/10.1016/j.scs.2011.07.005
  4. Liao, C. M., Singh, S. and Wang, T. S., 1998, "Characterizing the Performance of Alternative Evaporative Cooling Media in Thermal Environmental Control Application," J. Envir. Sci. Health, Vol. 33, No. 7, pp.1391-1417. https://doi.org/10.1080/10934529809376795
  5. Liao, C. M. and Chiu, K. H., 2002, "Wind Tunnel Modeling the System Performance of Alternative Cooling Pads in Taiwan Region," Build. Environ. Vol. 37, No. 2, pp. 77-87.
  6. https://www.munters.com/ko/munters/products/coolers--humidifiers/glasdek/
  7. Franco, A., Valera, D. L., Pena, A. and Perez, A. M., 2011, "Aerodynamic Analysis and CFD simulation of Several Cellulose Evaporative Cooling Pads used in Mediterranean Greenhouses," Computers and Electronics in Agriculture, Vol. 76, pp. 218-230. https://doi.org/10.1016/j.compag.2011.01.019
  8. Malli, A., Seyf, H. R., Layeghi, M., Sharifian, S. and Behravesh, H., 2011, "Investigating the Performance of Cellulosic Cooling Pads," Energy Conversion and Management, Vol. 52, pp. 2598-2603. https://doi.org/10.1016/j.enconman.2010.12.015
  9. ASHRAE Standard 41.1, 1986, Standard Method for Temperature Measurement, ASHRAE.
  10. ASHRAE Standard 41.2, 1986, Standard Method for Laboratory Air-Flow Measurement, ASHRAE.
  11. ASHRAE Standard 41.5, 1986, Standard Measurement Guide, Engineering Analysis of Experimental Data, ASHRAE.
  12. Holman, J. P., 2010, Heat Transfer, 10th Ed., McGraw- Hill Pub.
  13. ASHRAE Standard 143, 2007, Method of Test for Rating Indirect Evaporative Coolers, ASHRAE.
  14. Focke, W. W., Zachariades, J. and Olivier, I., 1985, "The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers," Int. J. Heat Mass Trans. Vol. 28, No. 8, pp. 1469-1479. https://doi.org/10.1016/0017-9310(85)90249-2
  15. Muley, A. and Manglik, R. M., 1999, "Experimental Study of Turbulent Heat Transfer and Pressure Drop in a Plate Heat Exchanger with Chevron Plates," J. Heat Transfer, Vol. 121, pp. 110-117. https://doi.org/10.1115/1.2825923
  16. Martin, H., 1996, "A Theoretical Approach to Predict the Performance of Chevron-Type Plate Heat Exchangers," Chem. Eng. Proc., Vol. 35, pp. 301-310. https://doi.org/10.1016/0255-2701(95)04129-X
  17. Dovic, D., Palm, B. and Savic, S., 2009, "Generalized Correlations for Predicting Heat Transfer and Pressure Drop in Plate Heat Exchanger Channels of Arbitrary Geometry," Int. J. Heat Mass Trans., Vol. 52, pp. 4553-4563. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.074
  18. Shah, R. K. and London, A. L., 1978, Laminar Flow Forced Convection in a Duct, Academic Pub.
  19. KS M 5637, 2007, Paper and Board - Determination of Water Absorption after Immersion in Water, KSA.