DOI QR코드

DOI QR Code

Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구

  • Received : 2015.07.24
  • Accepted : 2015.12.07
  • Published : 2016.02.01

Abstract

The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

풍력발전기에서 메인 샤프트는 로터허브와 증속기를 연결하는 중요 부품 중 하나이며 주로 자유단조공법을 통하여 제조된다. 하지만 고 MW급 이상의 메인샤프트는 중량을 감소시키기 위하여 중공형 설계가 이루어지며 주조공법을 이용하여 제조되고 있다. 본 연구의 목적은 중공형 메인샤프트를 단조공법을 이용하여 생산할 수 있는 제조공정을 개발하는 것이다. 자유단조 공법의 공정설계 방법에 따라 중실형과 중공형 메인샤프트를 제조하기 위한 단조공정을 각각 설계하였다. 설계된 공정의 성형가능성을 확인하기 위하여 온도, 변형률 속도에 따른 유동응력을 열간압축실험을 통하여 구한 후 유한요소해석을 수행하였다. 유한요소해석을 통하여 단조업계에서 통상 행해지는 중실형 단조공법의 온도 및 변형률 등의 관리인자와 제안된 중공형단조공법의 인자를 비교하여 성형가능성을 예측하였다. 시제품 제작을 통하여 중공형 형상을 원소재회수율, 내부품질, 형상 및 치수 등에서 높은 생산성으로 제조가 가능함을 확인하였다.

Keywords

References

  1. Manwell, J.F. and Rogers, A.L., 2002, Wind Energy Explained : Theory, Design and Application, John Wiley & Sons LTD, 308-313.
  2. Dudra, S.P. and Im, Y.T., 1990, "Investigation of Metal Flow in Open-Die Forging with Different Die and Billet Geometries," J. Mater. Process. Technol., Vol. 21,No. 2, pp. 143-154. https://doi.org/10.1016/0924-0136(90)90003-D
  3. Choi, S.K., Chun, M.S. and Van Tyne, C.J., 2006, "Optimization of Open Die Forging of Round Shapes Using FEM Analysis," J. Mater. Process. Technol., Vol. 172, No. 1, pp. 88-95. https://doi.org/10.1016/j.jmatprotec.2005.09.010
  4. Kim, D.Y., Kim, Y.D., Kim, D.K. and Kim, J.D., 2003, "A Study on the Open Die Forging Preform Shape of Crank Throw for Large Ship Engines," Proc. Kor. Soc. Tech. Plast. Conf., pp. 191-194.
  5. Choi, S.K., Kim, W.T., Chun, M.S. and Moon, Y.H., 2003, "Effect of Process Parameters on Cylindrical Open Die Forging," Proc. Kor. Soc. Tech. Plast. Conf., pp. 221-224.
  6. Knap, M., Kugler, G. and Palkowski, H., 2004, "Prediction of Material Spreading in Hot Open-Die Forging," Steelres. Int., Vol. 75, No. 6, pp. 405-410. https://doi.org/10.1002/srin.200405787
  7. Tamura, K., Akiyama, M. and Tajima, J., 2005, "Optimization of Anvil Design for Ensuring Dimensional Precision of Forged Round Billet Without Forging Defects by Three-Dimensional Rigid-Plastic Finite Element Analysis," J. Eng. Sci., Vol. 219, pp. 461-475.
  8. Tamura, K. and Tajima, J., 2004, "Optimization of Open-Die Forging Process Design to Ensure Homogeneous Grain Size Refinement of Cast Structures by Three-Dimensional Rigid-Plastic Finite Element Analysis," J. Mech. Eng. Sci., Vol 218, No. 9, pp. 931-946. https://doi.org/10.1243/0954406041991305
  9. Lee, Y.S. and Kwon, Y.C., 2007, "Analysis on Void Closure Behavior During Hot Open Die Forging," Advanced Mat. Research, Vol. 26-28, pp. 69-72. https://doi.org/10.4028/www.scientific.net/AMR.26-28.69
  10. Kwon, Y.C. and Lee, Y.S., 2007, "A Study on Cavity Closure Behavior During Hot Open Die Forging Process," Trans of the Materials Processing, Vol. 16, No. 4, pp. 293-298 https://doi.org/10.5228/KSPP.2007.16.4.293
  11. Hatta, T. and Yoshida, H., 2011, "Application of Numerical Simulation Technology to Microstructure Control in Opendieforging," J. Jpn. Soc. Technol. Plast., Vol. 52, pp. 970-974. https://doi.org/10.9773/sosei.52.970
  12. Shivpuri, R. and Eruc, E., 1993, "Planning and Simulation of the Ring Rolling Process for Improved Productivity," Int. J. Mach. Tools and Manuf., Vol. 33, No. 2, pp. 153-173. https://doi.org/10.1016/0890-6955(93)90071-2
  13. Johnson, W. and Needham, G., 1968, "Experiments on Ring Rolling," Int. J. Mech. Sci., Vol. 10, pp. 95-113. https://doi.org/10.1016/0020-7403(68)90066-0
  14. Kim, N.S., Machida, S. and Kobayashi, S., 1990, "Ring Rolling Simulation by the Three Dimensional Finite Element Method," Int. J. Mech. Sci., Vol. 30, No. 4, pp. 569-577.
  15. Kim, K.H., Suk, H.G. and Huh, M.Y., 2007, "Development of the Profile Ring Rolling Process for Large Slewing Rings of Alloy Steels," J. Mater. Process. Technol., Vol. 187-188, pp. 730-733. https://doi.org/10.1016/j.jmatprotec.2006.11.040
  16. Cho, J.R. and Bae, W.B., 1998, "Analysis of the Cogging Process for Heavy Ingots by Finite Element Method and Physical Modelling Method," J. of Materials Processing Technol, Vol. 80-81, pp. 161-165. https://doi.org/10.1016/S0924-0136(98)00183-6
  17. Aksakal, B. and Osman, F.H., 2008, "Determination of Experimental Axial and Sideways Metal Flow in Open Die Forging," Materials & Design, Vol. 29, pp. 576-583. https://doi.org/10.1016/j.matdes.2007.03.009