DOI QR코드

DOI QR Code

Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery

V2-F 난류 모델의 터보기계 유동 해석 적용

  • 박재현 (포항공과대학교 기계공학과) ;
  • 손동경 (포항공과대학교 기계공학과) ;
  • 김창현 (포항공과대학교 기계공학과) ;
  • 백제현 (포항공과대학교 기계공학과)
  • Received : 2015.09.24
  • Accepted : 2016.01.22
  • Published : 2016.02.01

Abstract

Since a turbomachine has complex flow characteristics, which are caused by adverse pressure gradient and high speed motion, an elaborate turbulence model is needed to accurately predict the flow. Some turbulence models such as an algebraic or a two-equation eddy viscosity model have been used for in-house RANS-code, but it is difficult to obtain good result for several complex flows. In this study, Durbin's V2-F turbulence model, which has been known for better prediction for severe flow separation, is applied to T-Flow. It was validated for simple cases such as channel and compressor cascade, and its applicability to turbomachinery was shown by analyzing internal flow of a single rotor. As a result, the V2-F turbulence model shows better blade surface pressure distribution than the one-and-two equation turbulence model.

터보기계 내부 유동장은 역압력구배, 고속 유동으로 인해 매우 복잡하며, 이를 해석하기 위해 보다 정교한 난류 모델이 요구된다. 유동 해석을 위해 대수모델, 2-방정식 와점도 모델 등이 널리 사용되고 있으나, 매우 복잡한 유동을 모사하는데 어려움이 있다. 본 연구에서는 복잡한 유동에서의 예측성능이 우수하다고 알려진 Durbin의 V2-F난류 모델을 자체 개발 코드인 T-Flow에 적용하였으며, 채널 및 압축기 캐스캐이드 유동 해석 결과를 이용하여 난류 모델을 검증하였다. 또한 저속 압축기 동익 해석을 통해 터보기계 내부 유동에서의 적용 가능성을 판단하였다. 그 결과, V2-F난류 모델은 1-방정식, 2방정식 난류 모델보다 우수한 블레이드 표면 압력 분포 예측성능을 보였다.

Keywords

References

  1. Chima, R. V., Giel, P. W. and Boyle, R. J., 1993, "An Algebraric Turbulence Model for Three Dimensional Viscous Flows," NASA TM-105931.
  2. Menter, F. R., 1992, "Performance of Popular Turbulence Models for Attached and Seperated Adverse Pressure Gradient Flows," AIAA Journal, Vol. 30, No. 8, pp. 2066-2071. https://doi.org/10.2514/3.11180
  3. Menter, F. R., 1994, "Two-equation Eddy-viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605. https://doi.org/10.2514/3.12149
  4. Garg, V. K. and Ameri, A. A., 2001, "Two-equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade," Inter. J. of Heat and Fluid Flow, Vol. 22, pp. 593-602. https://doi.org/10.1016/S0142-727X(01)00128-X
  5. Park, J. Y., Chung. H. T. and Baek, J. H., 2003, "Tip Leakage Flow on the Transonic Compressor Rotor," Trans. Korean Soc. Mech. Eng. B, Vol. 27, No. 1, pp. 84-94. https://doi.org/10.3795/KSME-B.2003.27.1.084
  6. Park, J. I., Choi, M. S. and Baek, J. H., 2006, "Numerical Studiy on the Clocking Effect in A 1.5 Stage Axial Turbine," Journal of Computational Fluids Engineering(KSCFE), Vol. 11, No. 4, pp. 1-8.
  7. Choi, M. S., Park, J. Y. and Baek, J. H., 2005, "Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 8, pp. 948-955. https://doi.org/10.3795/KSME-B.2005.29.8.948
  8. Deck, S., Duveau, P., Espiney, P. and Guillen, P., 2002, "Development and Application of Spalart- Allmaras One Equation Turbulence Model to Threedimensional Supersonic Complex Configurations," Aerospace Science and Technology 6, pp.171-183. https://doi.org/10.1016/S1270-9638(02)01148-3
  9. Catris, S. and Aupoix, B., 2000, "Density Corrections for Turbulence Models," Aerospace Science and Technology 4, pp. 1-11. https://doi.org/10.1016/S1270-9638(00)00112-7
  10. Durbin, P. A., 1995, "Separated Flow Computation with the k-e-v2 Model," AIAA Journal, Vol. 33, No. 4, pp. 659-664. https://doi.org/10.2514/3.12628
  11. Lien, F. S. and Durbin, P. A., 1996, "Non-linear k-e-v2 Modelling with Application to High-lift," Proceedings of the Summer Program, Stanford Univ., pp. 5-12.
  12. Durbin, P. A., 1996, "On the k-e Stagnation Point Anomaly," International Journal of Heat and Fluid Flow, Vol. 17, pp.89-90. https://doi.org/10.1016/0142-727X(95)00073-Y
  13. Laurence, D. R., 2004, "A Robust Formulation of the V2-F Model," Flow Turbulence and Combustion, Vol. 73, pp. 219-185.
  14. Davidson, L., 2003, "Modifications of the V2-F Model for Computing the Flow in a 3D Wall Jet," Turbulence Heat and Mass Transfer, Vol. 4, pp. 577-584.
  15. Laufer, J., 1951, "Investigation of Turbulent Flow in a Two-dimensional Channel," NASA-TN-2123.
  16. hoheisel, H. and Seyb, N. J., 1990, "High Subsonic Compressor Cascade DAC Report," Test Case for Computation of Internal Flows in Aero Engine Components, pp. 51-69.
  17. Wanger, J. H., Dring, R.P. and Joslyn, H.D., 1983, "Axial Compressor Middle Stage Secondary Flow Study," NASA CR-3701.