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Abstract
Several task clustering heuristics are proposed for allocating tasks in heterogeneous systems to achieve a good response

time in data intensive jobs. However, one of the challenging problems is the process in task scheduling after task alloca-

tion by task clustering. We propose a task scheduling method after task clustering, leveraging worst schedule length

(WSL) as an upper bound of the schedule length. In our proposed method, a task in a WSL sequence is scheduled prefer-

entially to make the WSL smaller. Experimental results by simulation show that the response time is improved in several

task clustering heuristics. In particular, our proposed scheduling method with the task clustering outperforms conven-

tional list-based task scheduling methods.

Category: Smart and intelligent computing
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I. INTRODUCTION

Recently, task execution models are becoming more

diverse, e.g., grid computing, cloud computing. Especially,

as we enter the so called “Big Data” era where massive

nonuniform data are gathered from the real world and

webpages through internet, searched and analyzed in real

time manner. These data are processed in parallel by het-

erogamous systems, i.e., many computational resources

with various processing speeds and communication band-
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widths, connected over the network. Jobs running over

such environment are known to be data-intensive such as

MapReduce, in which large data travel over tasks. There-

fore, computational resource allocations and task sched-

uling methods for data-intensive jobs are important for

efficient use of resources and quick response time (here-

inafter, we call it ‘schedule length’) for real time application.

On task scheduling methods for a work-flow type job

with precedence constraint among tasks over heteroge-

neous distributed environment, methods based on list

scheduling such as Heterogeneous Earliest Finish Time

(HEFT) [1], Predict Earliest Finish Time (PEFT) [2], and

Constrained Earliest Finish Time (CEFT) [3]. These meth-

ods are effective for reducing the schedule length against

computationally intensive jobs. Yet, these methods do not

achieve the expected improvement in schedule length for

data intensive jobs such as MapReduce because each task

is inserted in the idle time for each processor without

considering the actual data transfer time.

Considering data communication time among tasks,

many task clustering heuristics have been proposed for

heterogeneous systems with data communications local-

ized in a cluster, e.g., Resource Aware Clustering (RAC)

[4], Flexible Clustering and Scheduling (FCS) [5], Clus-

tering for Heterogeneous Processors (CHP) [6], and Trip-

let [7]. These methods are considered to be effective for

data intensive jobs, as  actual processing time and com-

munication bandwidth of each processor is not used, do

not always achieve a good schedule length in all types of

applications and systems, and do not specify task sched-

uling after clustering. Other task scheduling methods con-

sidering data communication time have been proposed,

e.g., [8, 9]. These duplicate tasks to localize communica-

tions among tasks.

We propose a task scheduling method after completion

of task clustering and processor assignment to the clusters,

leveraging worst schedule length (WSL) [10, 11] affect-

ing schedule length. It works with conventional cluster-

ing heuristics and improves their schedule length, using

the actual processor time and the communication band-

width of the assigned processor.

II. ASSUMED MODE

A. System Model

In this paper, we supposed off-line scheduling instead

of on-line scheduling where tasks are assigned to proces-

sor after becoming ready to be executed, e.g., the  method

proposed in [12]. We assumed that a job is expressed as a

directed acyclic graph (DAG), which is known as a work-

flow type job. Let Gs = (V, E, V s
cls) be the DAG, where V

is the set of tasks, E is the set of edges (data communica-

tions among tasks), and V s
cls is the set of task clusters

including one or more tasks by s task clustering steps.

This means that Gs has (|V| − s) unclustered tasks and
|V| = |V s

cls | for s = 0. The i-th task is denoted as ni, and let

w(ni) be the size of ni, i.e., w(ni) is the sum of unit times

for processing by the reference processor. We define data

dependency and direction of data transfer from ni to nj as

ei,j, where c(ei,j) is the sum of unit times for transferring

data from ni to nj over the reference communication link.

One constraint imposed by a DAG is that a task cannot

start for execution until all data from its predecessor tasks

arrive. pred(ni) is the set of immediate predecessors of ni,

and suc(ni) is the set of immediate successors of ni. If

pred(ni) = Ø, ni is called START task, and if suc(ni) = Ø,

ni is called END task. If there are one or more path form

ni to nj, we denote such a relation as ni p nj.

We assume that each processor is completely con-

nected to others over the network, with heterogeneous

processing speeds and communication bandwidths. The

set of processors is expressed as P = {p1, p2, ■    ■    ■ pn}, and

the processing speed of pi is denoted as αi when that of

the reference processor is set to 1. The execution time in

the case when nk is processed on pi is expressed as tp(nk, αi)

= w(nk) /αi. Let the set of communication bandwidths be

β =  {β1, β2, ■    ■    ■    ■ βn}, where that of the reference commu-

nication link is set 1, and if c(ei,j) is sent from pk to pl, the

communication time is defined as the communication

speed Lk,l such that Lk,l = min{βk, βl}, then let the commu-

nication time be tc(ei,j , Lk,l)  = c(ei,j)/Lk,l .

B. Task Clustering

A task cluster is a set of tasks explicitly grouped

together before scheduling every task. As a result, every

task in a task cluster comes to be assigned to the same

processor. Let the i-th task cluster in V s
cls be clss(i). If n

s
k

is included in clss(i) by the (s + 1)th task clustering, it is

expressed by clss+1(i) ← clss(i) U {n
s
k}. If any two tasks,

i.e., ni and nj are included in the same cluster, they are

assigned to the same processor. In this case the communi-

cation time between nsi and n
s
j becomes zero.

The total task size in a task cluster is called the task

cluster size, and we call the value of the task cluster size

divided by the processing time the task cluster processing

time, or T(clss(i), αp).

C. Schedule Length

In a DAG application, a task can start for execution if

every data from its immediate predecessors has arrived.

Let the start time of ni on pp be ts(ni, pp), and let the com-

pletion time of nj on pp be tf(nj, pp). Then tf(nj , pp) is

defined as follows.

tf(nj, pp) = ts(nj, pp) + tp(w(nj), αp). (1)

When all the data from pred(nj) has arrived at nj, nj can

start for execution immediately. However, even if every
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data from pred(nj) has arrived at nj, nj cannot be started

until the execution of another task in the same processor

is finished. The time when all the data from every imme-

diate predecessor task has arrived at nj is called as data

ready time (DRT) [10]. If we define DRT of nj on pp when

every task in pred(ni) is scheduled as tdr(ni, pq), it is

derived as follows.  

tdr(ni, pq) = .

(2)

From (2), tdr(nj) is derived from the completion time of

tasks in pred(nj) assigned to the same processor and the

data arrival time from tasks in pred(nj) assigned to other

processors. In the former case, p = q and tc(c(ei,j), Lp,q) = 0.

On the other hand, the latter case requires data transfer

time. The start time of ni , i.e., ts(nj, pp) is derived using

DRT as follows.

ts(nj, pq) = max {tf(ni, pq), tdr(nj , pq)}, (3)

where ni has been scheduled. In (3), the choice of tf (ni, pq)

affects the completion time of nj. If ts(nj, pq) is derived by

tf (ni, pq), there must be an idle time slot which can

accommodate tp(nj, αq) and starts at tf (ni, pq) in case of an

insertion–based policy. On the other hand, if ts(nj, pq) is

derived by tdr(ni, pq), there is data waiting time for data

arrival from other processors. If we define such a data

waiting time as tw(nj, pp), it can be expressed as follows.

(4)

During the time slot derived by (4), some tasks come

to be inserted by an insertion-based policy in order to

minimize their completion time. The schedule length is

expressed by 

. (5)

D. Task Scheduling in Clusters

Fig. 1 shows an example of a task clustering and

scheduling tasks. In the figure, (a) represents the initial

state of the DAG and (b)–(d) represent the states after a

task clustering has been finished. Execution orders of

tasks are different among (b), (c) and (d).

In Fig. 1(b), schedule length in the order of n2→n3→n5
is 23. In Fig. 1(c), the schedule length in the order of n3→

n2 → n5 is 24, because the data arrival time of e2,7 at n7 is

delayed by the increase of the start time of n2. In

Fig. 1(d), the schedule length is larger than that of (b) and

(c) by scheduling n2 in cls(1) at the latest execution order.

It can be concluded that the schedule length is varied

depending on the execution order for each task in clus-

ters, even though the set of tasks belonging to the cluster

is the same among (b), (c), and (d).

III. PREVIOUS WORK

In our previous work [10, 11], we presented a processor

assignment strategy for processor utilization. The number

of processors is limited by imposing the lower bound for

each cluster size. Under the constraint, we theoretically

showed which processor should be assigned the cluster

(assignment unit). The processor to be assigned is the one

which has good impact on minimizing indicative value

for the schedule length.

A. Related Results

Our previous works [10, 11] focus on how to deter-

mine the lower bound of each assignment unit size (sum

of task sizes in the task cluster divided by the processing

speed) in order to find a subset of given processors. Con-

tributions of the literature [10, 11] are: (i) WSL was

defined and its effect on the schedule length was pro-

posed, and (ii) the lower bound of the assignment unit

size for a processor was derived. In the following sec-

tions, we briefly describe those two factors.

B. Worst Schedule Length

WSL is the maximum execution path length in case

each task is executed as late as possible in a processor,

provided that there is no data waiting time for each task

maxn
i

pred n
i

( ),p
p

P∈∈ tf ni, pp( ) tC c ei,j( ), Lp,q( )+{ }

tw nj, pq( ) 0,     if  tf ni, pq( ) tdr≥ nj, pq( )
tdr nj, pq( ) tf ni, pq( ), otherwise.–⎩

⎨
⎧

=

Schedule length maxsuc n
i

( )=∅,p
p

P∈ tf nk, pp( ){ }=

Fig. 1. Task scheduling after task clustering. (a) Initial state, (b)
task scheduling (SL=23), (c) task scheduling (SL=24), and (d) task
scheduling (SL=29).
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once the processor starts execution. Since WSL deriva-

tion requires the assignment and clustering state M(Gs),

first we present the definition of M(Gs). At the initial

clustering state G0, each task belongs to a task cluster and

suppose that it is assigned to the virtual processor

pi
vt ∈ Pvt having the maximum processing speed and maxi-

mum communication bandwidth.

Let M : Gs → P be the assignment state after a proces-

sor assignment is performed to Gs. M(G0) corresponds to

{(cls0(1), p1
vt), (cls0(2), p2

vt), …., (cls0(|V|), p|V|
vt)}, where

pi
vt is a virtual processor having the maximum processing

speed and the maximum communication bandwidth.

From the initial assignment state, each virtual processor

is replaced with an actual processor and the number of

task clusters is reduced by a processor assignment and a

task clustering, i.e., | M(Gs)| ≤ | M(G0)| for s > 0. 

Table 1 shows notations for deriving WSL. WSL(M(Gs))

is the maximum of LV(clss(i)), which corresponds to the

maximum of level(nk), where nk ∈ clss(i). level(nk) is the
maximum time duration from the START task to the

END task in case nk is scheduled as late as possible. That

is, WSL(M(Gs)) is the maximum of level value in all tasks

at the clustering state of M(Gs). For a task cluster clss(i),

top(clss(i)) is the set of tasks which can start execution

first in clss(i), and in(clss(i)) is the set of tasks having incom-

ing edges from other task clusters and out(clss(i)) is the

set of tasks having outgoing edges to other task clusters.

btm(clss(i)) is the set of tasks having no immediate suc-

cessor tasks in clss(i), and dc(nk, clss(i)) is the set of tasks

being one of descendant tasks of  nk in clss(i). S(nk, clss(i))

is the time span from the start time of the task in

top(clss(i)) to the start time of nk in case that tw(nk, pp) = 0

and every task having no dependencies with nk is exe-

cuted before nk. TL(clss(i)) is the latest start time of the

task in top(clss(i)), and tlevel(nk) is the latest start time of

nk without data waiting time if nk ∉ top(clss(i)). tlevel(nk)
is derived by S(nk, clss(i)) if nk ∉ top(clss(i)), otherwise it
is the latest data ready time. blevel(nk) is the longest path

length from nk to the END task, and BL(clss(i)) is the

maximum execution path length including S(nk, clss(i))

and blevel(nk). If LV(clss(i)) is defined as the sum of

TL(clss(i)) and BL(clss(i)), WSL at M(Gs), i.e., WSL(M(Gs))

is defined as the maximum value of LV(clss(i)) where

clss(i) ∈ V
s
cls. 

EXAMPLE 3.1. Fig. 2 presents an example of WSL der-

ivation. (a) is the DAG at M(G0), and (b) is the DAG at

M(G4), i.e., four tasks have been included in task clusters.

In both cases, bold arrows mean the execution sequence

dominating WSL. Suppose there are three processors

(pi, αi, βi) = (p1, 4, 2), (p2, 2, 4), (p3, 4, 4). In Fig. 2(a),

each task belongs to a task cluster denoted by dashed box

and assigned to a virtual processor having the maximum

processing speed being 4 and the maximum communica-

Table 1. Notation for WSL(M(Gs))

Parameter Definition

top(cls
s
(i)) The set of tasks having no immediate predecessor tasks in cls

s
(i)

in(clss(i)) The set of tasks having one or more immediate predecessor tasks in the cluster other than cls
s
(i)

out(clss(i)) The set of tasks having one or more immediate successor tasks in the cluster other than cls
s
(i)

btm(cls
s
(i)) The set of tasks having no immediate successor tasks in cls

s
(i)

dc(nk , clss(i)) The set of tasks in clss(i) having paths from nk,

i.e., {nl|nk p nl, nl ∈ clss(i)} {nk}

S(nk , clss(i))

tlevel(nk)

                 

    

TL(clss(i))

blevel(nk)

BL(clss(i))

Level(nk)

LV(clss(i)) = 

WSL(M(Gs))

Here, note nk ∈ clss(i).

 ∪

tp ni, αp( )
n
i

cls
s
i( )∈

∑ tp ni, αp( )
n
i

dc n
k
,i( )∈

∑–

max
n
l

pred n
k

( )∈
tlevel nl( ) tp nl, αp( ) tc el,k, βq,p( )+ +{ },

if nk top clss i( )( ).∈

TL clss i( )( ) S nk, clss i( )( )+ , otherwise.

max
n
k

top cls
s
i( )( )∈

tlevel nk( ){ }.

max
n
l

suc∈ n
k

( ), n
l

cls
s
i( )∉

tp nk, αp( ) tc ek,l, βp,q( ) blevel nl( )+ +{ },

max
n
k

out cls
s
i( )( )∈

S nk, clss i( )( ) blevel nk( )+{ }.

tlevel nk( ) blevel nk( )+

TL clss i( )( ) BL clss i( )( )+ max
n
k

cls
s
i( )∈

level nk( ){ }

max
cls

s
i( ) Vs

cls
∈

LV clss i( )( ){ }
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tion bandwidth being 4. As for cls0(A), we have the fol-

lowing result. 

top(cls0(A)) = out(cls0(A)) = btm(cls0(A)) = {A}.

From this state, WSL(M(G0)) = 9.5 is determined by

the path, A, C, E, G, and H, which is the same as the criti-

cal path length at M(G0). On the other hand, at (b) there

are four task clusters. At cls4(A), suppose cls4(A), cls4(C),

cls4(G), and cls4(H) are assigned to p1, p2, p7
vt, and p8

vt,

respectively. Then we have the following result. 

top(cls4(A)) = {A}. in(cls4(A)) = Ø.

out(cls4(A)) = {A, D}, btm(cls4(A)) = {D}.

At cls4(C), we have 

top(cls4(C)) = {C}. in(cls4(C)) = {C}.

out(cls4(C)) = btm(cls4(C)) = {E, F}.

Since we have the following results as: 

dc(C, cls4(C)) = {C, E, F}. dc(E, cls4(C)) = {E}.

dc(F, cls4(C)) = {F}.

We obtain the following values:

TL(cls4(C)) = tlevel(C) = 2.

S(E, cls4(C)) = 8 – 4 = 4.

S(F, cls4(C)) = 8 – 1 = 7.

blevel(E) = 9. blevel(F) = 3.5.

BL(cls4(C)) = max {4 + 9, 7 + 3.5} = 13.

 

Then we have LV(cls4(C)) = 2 + 13 = 15. At the DAG

of Fig. 2(b), cls4(C) has two execution orders, i.e., C, E, F

and C, F, E. LV(cls4(C)) is taken when the execution order

is the former case (the dashed arrow means that E starts

execution after F is finished). We obtain LV(cls4(A)) = 14,

LV(cls4(G)) = LV(cls4(H)) = 15. Then we have WSL(M(G4))

= 15.

C. WSL Properties 

The task clustering heuristic proposed in the literature

[10] performs to minimize WSL instead of schedule

length because the schedule length cannot be determined

until every task is scheduled by a task scheduling

method. According to the literature [11], it is proved that

both the upper bound and the lower bound of the sched-

ule length can be made smaller if WSL is small. Thus,

minimizing WSL by a task allocation can lead to the

reduction of the schedule length.

D. Lower Bound of Assignment Unit Size 

In the literature [10], ∆WSLup(M(Gs)) is defined as an

upper bound of WSL(M(GS)) – WSL(M(G0)). That is, a

small value of ∆WSLup(M(Gs)) means that WSL can be

made smaller by the s-th clustering step. According to the

literature [10], ∆WSLup(M(Gs)) is a function of the lower

bound, the processing speed, and the communication

bandwidth.

 At ∆WSL(M(Gs)), there are a number of task clusters

exceeding the lower bound, i.e., δ(αp, βp, G
s) on a path

belonging to the set of tasks dominating WSL(M(Gs-1)),

Fig. 2. Example of worst schedule length derivation. (a) The state of M(G0) and (b) the state of M(G4).
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where αp and βp are variables that must be determined.

Thus,

, (6)

∆WSLup(M(Gs)) assumes the local minimum value when

δ(αp, βp, G
s) equals to the following value.

δopt(αp, βp, G
s)

, (7)

where  is a path where each task belongs to the set

of tasks dominating WSL(M(Gs-1)). In (7), δopt(αp, βp, G
s)

is derived by tracing the path in the set of tasks and edges

dominating WSL(M(Gs-1)). 

EXAMPLE 3.2. Fig. 3 shows an example of the lower

bound derivation presented in [10]. In Fig. 3(a), G and H

are unclustered at M(G4). The path, A, C, E, G, H is the

path in which every task belongs to the set of tasks {E, C,

F, G, H} dominating M(G4). From this path, δopt(αp, βp,

G5) is derived as 9.3 by assuming the next assigned pro-

cessor is p3. Then cls5(G) includes one of unclustered

tasks, H. However, the total execution time at cls5(G) at

(c) is 3 + 1 = 4 < 9.3 and then cls5(G) will be clustered into

one of cls5(A) or cls5(C) in the next task clustering step.

E. Existing Clustering Heuristics

Many task clustering heuristics have been proposed for

homogeneous system [13-16]. In homogenous systems,

task assignment is not required. As a result, a clustering

priority in a task clustering heuristic for homogeneous

system directory affects the schedule length. However, in

heterogeneous systems, system information, such as the

processing speed and communication bandwidth, is

required for deriving a clustering priority. Conventional

task clustering heuristics for heterogeneous systems do

not use actual processing time or communication time for

the clustering priority [4-7]. The objective of a clustering

is to localize data communications, and it is known that

DAGs with larger data size have better schedule length.

Even though RAC [4] and FCS [5] define the lower

bound of task clusters, they cannot get good schedule

length for all DAG. 

On the other hand, in literature [10], we proposed the

task clustering heuristic which derives the lower bound

for each task cluster automatically and gets good sched-

ule length for all DAGs. Proposed task clustering heuris-

tic consists of three phases based on minimizing WSL. (i)

Derive the lower bound for the cluster size as (7), (ii)

decide the processor to be assigned, which minimizes

∆WSL. Then (iii) merge several tasks into a cluster until

its size exceeds the lower bound derived in (i). In other

words, the proposed method manages to generate the lin-

ear cluster to minimize WSL.

IV. PROPOSAL

A. Basic Idea

In this section we propose a task scheduling method

that is performed after each task has been assigned to a

processor by a task allocation. If task allocation is per-

formed by a task clustering, each task is assigned to a

task cluster, i.e., a task cluster is an assignment unit for

each processor. The following shows features of our pro-

posal.

- Our proposal minimizes the WSL to lower the upper

and lower bounds of the schedule length. 

- We use the actual processing speed and the communi-

cation bandwidths of each processor assigned to each

task cluster for deriving the scheduling. The conven-

SL
WSL M G

s
( )( ) ∆WSLup M G

s
( )( )–

1 1

gmin M G
0

( )( )
----------------------------+

---------------------------------------------------------------------------≥

w nk( )
n
k

seq
s 1–

p

∈∑
αp

-----------------------------------

max
 nk V∈

w nk( ){ }

αp

-----------------------------

max
 ek,l E∈

c ek,l( ){ }

βp

-------------------------------+=

seqs 1–

p

Fig. 3. Lower bound derivation at M(G5). (a) The state of M(G4),
(b) δopt(α3, β3, G5) derivation with the path (A-C-E-G-H) being a
part of {A,C,F,E,G,H} which dominates WSL(M(G4)), and (c) the
state of M(G5).
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tional list-based task scheduling methods such as

HEFT, CEFT and PEFT adopt average processing time

and the average communication time for deriving the

scheduling priority.

B. Proposed Task Scheduling

We present how the scheduling priority is derived for

each task. We call a task as a free task, whose every

immediate predecessor task has been scheduled. The

objective of the proposed scheduling is to minimize WSL

by choosing a task having the maximum level value from

the free task list. By choosing such a task, we obtain the

fact that WSL can be made smaller as follows.

THEOREM 4.1. Let WSL after m tasks have been

scheduled be WSLm. 

If a task 

{level(ni)},

is selected at the m-th task selection phase, then we have

. (8)

Proof 4.1. First we define the two sets of tasks as

follows,

(9)

Without loss of generality, suppose that nk belongs to a

task cluster cls(K) and the level of cls(K) is defined as

LV(K).

(i) Level of tasks in FREEp, 

For each task ni ∈ FREEp, there can be two cases, i.e.,

whether ni belongs to cls(K) or not.

(i-i) The case of ni ∈ cls(K). 
If we have LV(K) = level(nk) before the m-th task selec-

tion, we obtain LV(K) after nk is selected as follows.

,

(10)

where levelm(ni) is level(ni) after m tasks have been

scheduled.

(i-ii) The case of ni ∉ cls(K).
In this case, level(ni) is not affected by nk selection.

Thus, WSL is not increased.

(ii) Level of tasks in FREEp.

For each task ni ∈ FREEp, level(ni) is not affected by nk
selection. Thus, WSL is not increased.

From (i) and (ii), it leads that WSL is not increased by

choosing the task having the maximum level in FREEsched. □

As described in Section III-C, minimizing WSL con-

tributes to lower the upper bound and the lower bound of

the schedule length. To minimize the WSL, the strategy

of our proposal is to reduce WSL for each scheduling

step. However, how to minimize WSL is an NP-complete

problem as with the schedule length minimization. That

is, our proposal is based on a warranty for WSL reduc-

tion. Moreover, our proposal has a practical time com-

plexity (see Section IV-D) and thus is said to be a cost-

effective approach to reducing both the upper bound and

the lower bound of the schedule length.

C. Procedure and Example

Fig. 4 presents the procedures for proposed scheduling.

First, FREEsched includes all of the START tasks and

USCED includes all of the tasks. This procedure finishes

when USCED becomes empty.

At line 2, the task to be scheduled is selected by the

level. After the completion of task clusterings and proces-

sor assignments to clusters, level(ni) can be derived with

the actual processor speed and the communication band-

width of the processor which ni has been assigned to. That

is, we can derive WSL. In the scheduling phase, the task

having the maximum level in FREEsched is scheduled by

inserting it into an idle time of the processor. The task is

assigned to an idle time of proc(ni) at line 5. After the

task is scheduled, each task in suc(ni)  becomes a part of

FREEsched if all of its predecessor tasks have been scheduled.

nk FREEsched s.t.,∈

level nk( ) max
n
i

FREE
sched

∈
=

WSLm WSLm 1–≤

FREEp ni ni FREEsched, pred ni( ) pred nk( ) ∅≠∩∈{ },=

FREEd ni ni FREEsched, pred ni( ) pred nk( ) ∅=∩∈{ }.=

LV K( ) maxn
i

CLS k( ) n
k

{ }–∈ level
m
ni( ){ } level

m 1–

nk( )≤=

Fig. 4. Procedure for the scheduling.
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EXAMPLE 4.1. Fig. 5 shows an example of scheduling

tasks. Fig. 5(a)–(c) present the DAG before scheduling

each task, the task scheduling result, and Gantt chart,

respectively. In Fig. 5(a), the DAG has two task clusters

and each cluster is assigned to each processor. Since there

is only one START task in Fig. 5(a), A is included in

FREEsched, and it is selected for scheduling. Then, B in

cls(E) and C in cls(E) become free, and their levels are

12.8 and 8, respectively; moreover, tf (A, p2) = 1.3. At step

2 of cls(E) in Fig. 5(b), D and E are assigned to p7, but

their levels are the same. In this case, their blevel values

are compared at line 2 in Fig. 4. Since blevel(D) = 5.4 <

blevel(E) = 6.8, E is selected. At step 3 of cls(E) in

Fig. 5(b), D is selected and its finish time is calculated.

There is no idle time between B and E according to

Fig. 5(c), and D is added after E. As a result, the finish

time of D is 8.7. Similarly, at step 4 of cls(E) in Fig. 5(c),

there is no idle time in B-E or E-D. Thus, G is added after D.

At step 5 of cls(E), step 5 of cls(H) and step 6 of cls(H), I,

J, and K are added, and the schedule time is 12.8.

D. Complexity of the Proposed Method

In this section, we analyze the complexity of the pro-

posed scheduling algorithm. At line 2 in Fig. 4, we have

|FREEsched| ≤ |V| and every task in FREEsched is ordered in

nonincreasing order of level. Thus, one task is put in

FREEsched by log|FREEsched| steps. As a whole, this opera-

tion takes O(|V|log|V|). 

At line 5 in Fig. 4, an idle slot can be found by at most

the number of tasks assigned to the processor. This takes |V|2.

At line 7 to 11, this requires |suc(ni)|log|suc(ni)| steps.

As a whole, it takes O(|E|log|V|).

Therefore, the complexity of the proposed scheduling

is O|V|2, which is not higher than those of existing sched-

uling [1-3].

V. EXPERIMENT

A. Objectives

We conducted the experimental simulations to confirm

advantages of our proposal against existing methods in

terms of schedule length. Actually, the schedule length

ratio (SLR) [1, 2] metric was used to measure the perfor-

mance of each scheduling method. The SLR is defined as

follows;

. (11)

B. Comparison with Existing Scheduling Methods

Here, we conducted the experimental simulations to

confirm advantages of the proposed scheduling method

against existing methods in terms of schedule length ratio.

1) Existing Scheduling Methods

Task clustering heuristics does not specify the task

scheduling method after task clustering. Here, we picked

up following task scheduling methods after clustering for

comparison.

-Method 1: The proposed scheduling method.

-Method 2: The task with minimum rank_down (the

longest path length from START task to the task) is

scheduled [1].

SLR SL
tp nk, maxp

i
P∈ αi{ }( )n

k
CP∈∑

--------------------------------------------------------------=

Fig. 5. Example of the scheduling. (a) Before scheduling tasks,
(b) the task scheduling results, and (c) Gantt chart.
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-Method 3: The task with minimum value of sum of

rank_down and rank_up (the longest path length from

the task to the END task) is scheduled [1].

-Method 4: The task with maximum rank_up is sched-

uled [1].

We supposed that Triplet [7] and RAC [4] are cluster-

ing heuristics working under task scheduling methods.

2) Experimental Environment

In the simulation, two types of DAGs, i.e., random

DAGs and Gaussian elimination DAGs, were generated.

We present each condition as follows.

a) Random DAGs: In the simulation, 100 DAGs were

generated under following conditions and average of

schedule lengths of DAGs were calculated after scheduling

tasks. For each DAG, the number of tasks in the DAG

was chosen from {50, 100, 300, 500, 1000} randomly,

the max to min ratio in terms of task size was 100, the

max to min ratio in terms of data size was 100, and the

communication to computation ratio (CCR) [17], defined

as the average communication bandwidth divided by the

average processing speed, was chosen from {0.1, 0.5, 1,

3, 5, 10}. The maximum number of tasks on a path, i.e.,

the depth, is defined by the parallelism factor (PF), which

is denoted by ; in our experiments, α was
chosen from {0.5, 1.0, 2.0}. For each task, out degree

was randomly chosen from 1 to 5. For the heterogeneity

of the system, processing speed of a CPU was chosen as

normal distribution where the max to min ratio were set

to 2, 5 and 10, and communication bandwidth were

chosen as normal distribution where the max to min ratio

was set to 2, 5 and 10.  

b) Gaussian elimination DAGs: In the simulation, 100

DAGs were generated in case matrix sizes were 10, 30

and 50, and averages of schedule lengths of DAGs were

calculated after scheduling tasks. For each DAG, the max

to min ratio in terms of task size was 100, the max to min

ratio in terms of data size was 100, and the CCR was cho-

sen from {0.1, 0.5, 1, 3, 5, 10}. For the heterogeneity of

the system, processing speed of a CPU was chosen as

normal distribution where the max to min ratios were set

to 2, 5 and 10, and communication bandwidth was chosen

as normal distribution where the max to min ratios were

set to 2, 5 and 10.

The simulation environment was developed by

JRE1.6.0_0, the operating system was Windows XP SP3,

the CPU architecture was Intel Core 2 Duo 2.66 GHz,

and the memory size is 2.0 GB. 

V( ) α⁄

Table 2. Comparison of SLR among scheduling method for
random DAGs (1/2)

CCR
Triplet w/ 

method 1

Triplet w/ 

method 2

Triplet w/ 

method 3

Triplet w/ 

method 4

0.1 1.438 1.483 1.44 1.421

0.5 2.013 2.211 2.108 2.093

1 2.511 2.475 2.497 2.602

3 4.014 4.213 4.159 4.186

5 4.616 4.672 4.702 4.815

10 8.319 8.467 8.513 8.344

DAG: directed acyclic graph, SLR: schedule length ratio, CCR:

communication to computation ratio.

Table 3. Comparison of SLR among scheduling method for
random DAGs (2/2)

CCR
RAC w/ 

method 1

RAC w/ 

method 2

RAC w/ 

method 3

RAC w/ 

method 4

0.1 2.017 2.271 1.938 1.998

0.5 2.736 2.994 2.866 2.831

1 3.813 4.017 3.905 3.982

3 7.298 7.419 7.498 7.418

5 9.371 9.667 9.891 9.776

10 12.732 13.044 13.318 13.417

DAG: directed acyclic graph, SLR: schedule length ratio, CCR:

communication to computation ratio.

Table 4. Comparison of SLR among scheduling methods for
Gaussian elimination DAGs (1/2)

CCR
Triplet w/ 

method 1

Triplet w/ 

method 2

Triplet w/ 

method 3

Triplet w/ 

method 4

0.1 3.724 3.778 3.781 3.517

0.5 6.132 6.391 6.218 6.191

1 7.375 7.668 7.423 7.402

3 9.412 9.815 9.915 9.529

5 13.858 14.194 14.011 14.033

10 15.729 16.512 16.228 15.994

DAG: directed acyclic graph, SLR: schedule length ratio, CCR:

communication to computation ratio.

Table 5. Comparison of SLR among scheduling methods for
Gaussian elimination DAGs (2/2)

CCR
RAC w/ 

method 1

RAC w/ 

method 2

RAC w/ 

method 3

RAC w/ 

method 4

0.1 2.017 2.133 2.317 1.983

0.5 3.248 3.372 3.174 3.711

1 4.395 4.571 4.618 4.498

3 9.155 9.372 9.779 9.227

5 16.289 16.835 17.037 16.793

10 18.642 19.325 19.492 18.881

DAG: directed acyclic graph, SLR: schedule length ratio, CCR:

communication to computation ratio.
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3) Experimental Result for Each Clustering

Tables 2 and 3 show comparison results for random

DAGs in terms of SLR. Tables 2 and 3 are cases of Trip-

let and RAC, respectively. For each value of CCR, SLRs

for Radom DAGs are derived with different scheduling

methods. Tables 4 and 5 show the comparison results for

Gaussian Elimination DAGs in terms of SLR. Tables 4

and 5 are cases of Triplet and RAC, respectively. For each

value of CCR, SLRs for Gaussian elimination DAGs are

derived with different scheduling methods.

In any case, the proposed scheduling method gets bet-

ter SLR than that of other scheduling methods if CCR is

equal to or larger than 0.5. That is, the proposed method

is suitable for data-intensive jobs with larger CCR. 

C. Comparison of Clustering Heuristics

In this experiment, we compared the SLR by method 1

in the task clustering in [10], Triplet and RAC with con-

ventional list-based task scheduling heuristics (HEFT,

PEFT, and PEFT).  We used the same experimental envi-

ronment described in Section V-B-2). We call the proposed

clustering heuristic in [10] as clustering 1 in this section. 

1) Experimental Results

Fig. 6 shows the comparison results for SLR. For each

value of CCR, SLRs for Radom DAGs are derived with

the proposed scheduling methods working above cluster-

ing 1, Triplet and RAC and with HEFT, PEFT and CEFT.

We can see that the proposed clustering heuristic [10]

with the proposed scheduling method has better SLRs, if

CCR is larger than 1.0. Fig. 7 shows experimental results

for SLRs on Gaussian elimination DAGs. We can see that

the clustering heuristic in [10] with the proposed schedul-

ing method has better SLRs, if CCR is equal to and larger

than 3. That is, the proposed scheduling method with the

clustering heuristic proposed in [10] is suitable for data

intensive jobs with larger CCR. 

D. Discussion

For both of Gaussian elimination DAGs and Random

DAGs, clustering 1 and xEFT (i.e., CEFT, PEFT, HEFT)

does not make big difference in terms of SLR in case

CCR is less than 3, because delays caused by data-wait-

ing time at each task affect SLR a little. On the other

hand, clustering 1 shows better SLRs remarkably in case

Fig. 6. Comparison of schedule length ratio (SLR) among clustering methods for random directed acyclic graph (DAG). CCR:
communication to computation ratio.

Fig. 7. Comparison of schedule length ratio (SLR) among clustering methods for Gaussian elimination. CCR: communication to
computation ratio.
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CCR is equal to or greater than 3. That is, bigger data-

transferring time makes bigger data-waiting time at each

processor and it is considered to contribute to make SLR

worse remarkably. The combination of clustering 1 mini-

mizing WSL and proposed scheduling method, i.e.,

method 1, which makes WSL smaller, was proved to be

effective for larger CCR.

Therefore, the proposed scheduling method working

over the clustering heuristic in [10] is suitable for work-

flow type jobs handling massive data.

VI. CONCLUSION

In this paper, we proposed a task scheduling method

for use upon completion of task clustering in heteroge-

neous system. With the proposed method, tasks on the

path dominating WSL, i.e., with maximum value of level,

are preferred to be scheduled. As a result, the SLR can be

made smaller than in several existing methods, if the

CCR is equal to or greater than 0.5.

Furthermore, the proposed scheduling method with the

task clustering heuristic proposed in [10] has been con-

firmed to produce smaller SLR than that of well-known

list scheduling method such as HEFT, CEFT and PEFT, if

CCR is equal to or greater than 3 through the experiment.

In conclusion the proposed scheduling method can be

applied to execute data-intensive jobs in heterogeneous

systems.
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