DOI QR코드

DOI QR Code

Synthesis and Ozone Resistance Characteristic of Fluorine-containing modified Polyurea

불소계 변성 폴리우레아의 합성 및 오존저항 특성

  • Kim, Sung Rae (Department of Chemical Engineering, Chungbuk National University) ;
  • Park, Ji Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2015.10.05
  • Accepted : 2015.11.10
  • Published : 2016.04.01

Abstract

The fluorine-containing modified polyurea was synthesized using the PTPE-diol to improve the ozone-resistance. Three types (PFDIA-10C, PFDIA-20C, PFDIA-30C) of the modified polyurea containing the fluorine content from 10 wt% to 30 wt% were prepared. After ozone treatment on the prepared films, the weight loss of film was investigated and analyzed the film properties such as hardness, wear resistance, tensile stress, elongation, etc. Also, the film surfaces were observed by the optical microscopy after ozone-resistance tests at 10 ppm for 336 h. It was shown that the defects such as the cracking, the bleaching and the mass loss were reduced and the ozone-resistance of films were improved when the contents of PFPE-diol are more than 20 wt%. It was found that the intensity of O-H peak in PFDIA compounds confirmed by FT-IR was decreased as fluorine contents were increasing.

본 연구에서는 내 오존성을 향상시키기 위해 PFPE-diol을 도입하여 불소계 변성 폴리우레아를 합성하였다. 불소 함량에 따라 변성 폴리 우레아(PFDIA-10C, PFDIA-20C, PFDIA-30C)를 제조하였으며 각각의 폴리우레아는 불소를 10 wt%~30 wt% 포함하였다. 제조된 도막의 오존처리 전 후 질량변화를 조사하였고, 도막의 경도, 내마모성, 인장성능 그리고 신장율 등의 물성을 분석하였다. 또한 내 오존성 테스트(10 ppm, 336 h)후에 광학현미경을 통해 도막표면을 관찰한 결과 PFPE-diol의 함량이 20 wt% 이상 일 때 균열, 탈색 그리고 질량감소량에서 양호한 결과를 보여주어 도막의 내 오존성이 향상되었음을 알 수 있었다. FT-IR 분석을 통해 PFDIA 합성물의 O-H 피크가 불소 함량 증가함에 따라 감소하는 것을 확인하였다.

Keywords

References

  1. Cooper, S. L. and Tobolsky, A. V., "Properties of Linear Elastomeric Polyurethanes," J. Appl. Polym. Sci., 10, 1837(1966). https://doi.org/10.1002/app.1966.070101204
  2. Paul, C. J., Nair, M. G. R., Koshy, P. and Idage, B. B., "Recent Advances in Polymer Nanocomposites," J Appl Polym Sci., 74, 706(1999). https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3<706::AID-APP25>3.0.CO;2-A
  3. Van Bogart, J. W. V., Gibson, P. E. and Cooper, S. L., "Structureproperty Relationships in Polycaprolactone-polyurethanes," J. Polym. Sci: Polym. Phys. Ed., 21, 65(1983). https://doi.org/10.1002/pol.1983.180210106
  4. Joo, J., Kim, H. S., Yoo, H. J., Lee, J. R. and Cheong, I. W., "Synthesis and Characterization of Epoxy Silane-modified Silica/Polyurethane-urea Nanocomposite Films," Korea Chem. Eng. Res., 50, 371(2012). https://doi.org/10.9713/kcer.2012.50.2.371
  5. Kim, S. R., Lee, S. G., Yang, J. M. and Lee, J. D., "Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube," Polym. Soc. Korea, 38, 573(2014). https://doi.org/10.7317/pk.2014.38.5.573
  6. Nasar, A. S., Subramani, S. and Radhakrishnan, G., "Synthesis and Properties of Imidazole-blocked Diisocyanates," Polym Int., 48, 614(1999). https://doi.org/10.1002/(SICI)1097-0126(199907)48:7<614::AID-PI192>3.0.CO;2-V
  7. Sasaki, N., Yokoyama, T. and Tanaka, T., "Properties of Isocyanurate- type Crosslinked Polyurethanes," J. Polym. Sci. Polym. Chem. Ed., 11, 1765(1973). https://doi.org/10.1002/pol.1973.170110801
  8. Benrashid, R., Nelson, G. L., Linn, J. H. and Hanley, K. H., "Surface Characterization of Segmented Siloxane-urethane Block Copolymers," J. Appl. Polym. Sci., 49, 523(1993). https://doi.org/10.1002/app.1993.070490316
  9. Hong, Y. T., Lee, J. H. and Kim, Y. S., "Fluoropolymer Films," Polym. Sci. Tech., 13, 724(2002).
  10. Bayer, O., "Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane0)," Angew. Chem., A59, 257(1947).
  11. Barbeau, P., Gerard, J. F., Magny, B. and Pascault, J. P., "Effect of the Diisocyanate on the Structure and Properties of Polyurethane Acrylate Prepolymers," J. Polym. Sci: Part. B: Polym. Phys., 38, 2750(2000). https://doi.org/10.1002/1099-0488(20001101)38:21<2750::AID-POLB50>3.0.CO;2-B
  12. Won, J. U., Jun, J. P. and Lee, B. J., "Functional Polyurethanes," Polym. Sci. Tech., 12, 724(2001).
  13. Karatas, S., Kizilkaya, C., Kayaman-Apohan, N. and Gungor, A., "Preparation and Characterization of Sol-Gel Derived UV Curable Organo-Silica-Titania Hybrid Coatings," Prog. Org. Coat., 60, 140 (2007). https://doi.org/10.1016/j.porgcoat.2007.07.010
  14. Lee, C. H., Lee, S. G., Kim, S. R. and Lee, J. D., "Preparation of UV-curable Ozone Resistance Coating Solutions using Fluoromonomer," Korea Chem. Eng. Res., 50, 421(2012). https://doi.org/10.9713/kcer.2012.50.3.421
  15. Gururaj, T., Subasri, R., Soma Raju, K. R. C. and Padmanabham, G., "Effect of Plasma Pretreatment on Adhesion and Mechanical Properties of UV-Curable Coatings on Plastics," Appl. Surf. Sci., 257, 15(2011).
  16. Won, J. U., Joen, J. P. and Lee, B. J., "Recent Development of Fluoropolymers," Polym. Sci. Tech., 14, 206(2003).
  17. Asif, A. and Shi, W., "Synthesis and Properties of UV Curable Waterborne Hyperbranched Aliphatic Polyester," Eur Polym J, 39, 933(2003). https://doi.org/10.1016/S0014-3057(02)00311-7
  18. Wei, H., Lu, Y., Shi, W., Yuan, H. and Chen, Y., "UV Curing Behavior of Methacrylated Hyperbranched Poly(amine-ester)s," J. Appl. Polym. Sci., 80, 51(2001). https://doi.org/10.1002/1097-4628(20010404)80:1<51::AID-APP1074>3.0.CO;2-W

Cited by

  1. Co-delivery system of chemotherapy drugs and active ingredients from natural plants: a brief overview of preclinical research for cancer treatment vol.17, pp.5, 2016, https://doi.org/10.1080/17425247.2020.1739647