DOI QR코드

DOI QR Code

Decreasing Particle Size of Paclitaxel Using Polymer in Fractional Precipitation Process

고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소

  • Kim, Min Jae (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 김민재 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2015.10.02
  • Accepted : 2015.11.10
  • Published : 2016.04.01

Abstract

In this study, we have for the first time applied fractional precipitation with hydrophilic polymer in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no hydrophilic polymer was employed, the addition of hydrophilic polymer in fractional precipitation resulted in a decrease in the size of the paclitaxel precipitate. Among the polymers used, HPMC 2910 was the most effective for inhibition of precipitate growth. A polymer concentration of 0.2% (w/v) obtained the smallest particle size. The particle size was reduced by ~35% compared to control. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.

원료의약품의 활용도를 향상시키기 위하여 입자 크기의 감소는 매우 중요하다. 본 연구에서는 식물세포 유래 항암물질 파클리탁셀의 입자크기 감소를 위하여 친수성 고분자물질을 첨가하여 분별침전을 수행하였다. 고분자물질이 첨가된 분별침전을 통해 입자크기를 감소시킬 수 있었다. 특히 고분자물질 HPMC 2910을 이용한 분별침전의 경우 침전물 성장을 가장 효과적으로 저해함을 알 수 있었다. 고분자물질 HPMC 2910농도 0.2%에서 가장 작은 입자크기의 침전물을 얻을 수 있었는데, 대조군 대비 ~35% 정도로 입자크기를 감소시킬 수 있었다. 또한 파클리탁셀 침전물의 입자크기는 친수성 고분자물질 첨가에 따른 침전용액의 제타전위 절대값에 반비례함을 알 수 있었다.

Keywords

References

  1. Rowinsky, E. K., Cazenave, L. A. and Donehower, R. C., "Taxol : a Novel Investigational Antimicrotubule Agent," J. Natl. Cancer Inst., 82, 1247-1259(1990). https://doi.org/10.1093/jnci/82.15.1247
  2. Schiff, P. B., Fant, J. and Horwitz, S. B., "Promotion of Microtubule Assembly in vitro by Taxol," Nature, 277, 655-667(1979). https://doi.org/10.1038/277655a0
  3. Kim, G. J. and Kim, J. H., "A Simultaneous Microwave-assisted Extraction and Adsorbent Treatment Process Under Acidic Conditions for Recovery and Separation of Paclitaxel from Plant Cell," Korean J. Chem. Eng., 32, 1023-1028(2015). https://doi.org/10.1007/s11814-015-0075-1
  4. Kim, J. H., "Paclitaxel: Recovery and Purification in Commercialization Step," Korean J. Biotechnol. Bioeng., 21, 1-10(2006).
  5. Hsiao, J. R., Leu, S. F. and Huang, B. M., "Apoptotic Mechanism of Paclitaxel-induced Cell Death in Human Head and Neck Tumor Cell Lines," J. Oral Pathol. Med., 38, 188-197(2009). https://doi.org/10.1111/j.1600-0714.2008.00732.x
  6. Rao, K. V., Hanuman, J. B., Alvarez, C. and Stoy, M., "A New Large-scale Process for Taxol and Related Taxanes from Taxus brevifolia," Pharm. Res., 12, 1003-1010(1995). https://doi.org/10.1023/A:1016206314225
  7. Baloglu, E. and Kingston, D. G., "A New Semisynthesis of Paclitaxel from Baccatin," J. Nat. Prod., 62, 1068-1071(1999). https://doi.org/10.1021/np990040k
  8. Choi, H. K., Son, S. J., Na, G. H., Hong, S. S., Park, Y. S. and Song, J. Y., "Mass Production of Paclitaxel by Plant Cell Culture," Korean J. Plant Biotechnol., 29, 59-62(2002). https://doi.org/10.5010/JPB.2002.29.1.059
  9. Georgiev, M. I., Weber, J. and Maciuk, A., "Bioprocessing of Plant Cell Cultures for Mass Production of Targeted Compounds," Appl. Microbiol. Biotechnol., 83, 809-823(2009). https://doi.org/10.1007/s00253-009-2049-x
  10. Cho, E. B., Cho, W. K., Cha, K. H. and Park, J. S., "Enhanced Dissolution of Megestrol Acetate Microcrystals Prepared by Antisolvent Precipitation Process Using Hydrophilic Additives," Int. J. Pharm., 396, 91-98(2010). https://doi.org/10.1016/j.ijpharm.2010.06.016
  11. Yeo, S. D., Kim, M. S. and Lee, J., "Recrystallization of Sulfathiazole and Chlorpropamide Using the Supercritical Fluid Antisolvent Process," J. Supercrit Fluids, 25, 143-154(2003). https://doi.org/10.1016/S0896-8446(02)00094-3
  12. Pyo, S. H., Kim, M. S., Cho, J. S., Song, B. K., Han, B. H. and Choi, H. J., "Efficient Purification and Morphology Characterization of Paclitaxel From Cell Cultures of Taxus chinensis," J. Chem. Technol. Biotechnol., 79, 1162-1168(2005).
  13. Prakash, K., Jieun, R., Kim, H. M., Kim, I. S., Kim, J. T., Kim, H. I., Cho, J. M., Yun, G. A. and Lee, J. H., "Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability," Asian J. Pharm. Sci., 9, 304-316(2014). https://doi.org/10.1016/j.ajps.2014.05.005
  14. Ruala, J., Eerikaine, H. and Kauppinen, E. I., "Influence of the Solvent Composition on the Aerosol Synthesis of Pharmaceutical Polymer Nanoparticles," Int. J. Pharm., 284, 13-21(2004). https://doi.org/10.1016/j.ijpharm.2004.07.003
  15. Chen, X., Young, T. J., Sarkari, M., Williams III, R. O. and Johnston, K. P., "Preparation of Cyclosporine A Nanoparticles by Evaporative Precipitation into Aqueous Solution," Int. J. Pharm., 242, 3-14(2002). https://doi.org/10.1016/S0378-5173(02)00147-3
  16. Vehring, R., "Pharmaceutical Particle Engineering Via Spray Drying," Pharm. Res., 25, 999-1022(2008). https://doi.org/10.1007/s11095-007-9475-1
  17. Weers, J. G., Tarara, T. E. and Clark, A. R., "Design of Fine Particles for Pulmonary Drug Delivery," Expert Opin. Drug Deliv., 4, 297-313(2007). https://doi.org/10.1517/17425247.4.3.297
  18. Kawashima, Y. and York, P., "Drug Delivery Applications of Supercritical Fluid Technology," Adv. Drug Deliv. Rev., 60, 297-298 (2008). https://doi.org/10.1016/j.addr.2007.10.011
  19. Han, M. G., Jeon, K. Y., Mun, S. and Kim, J. H., "Development of a Micelle-fractional Precipitation Hybrid Process for the Pre-purification of Paclitaxel from Plant Cell Cultures," Process Biochem., 45, 1368-1374(2010). https://doi.org/10.1016/j.procbio.2010.05.010
  20. Jeon, K. Y. and Kim, J. H., "Improvement of Fractional Precipitation Process for Pre-purification of Paclitaxel," Process Biochem., 44, 736-741(2009). https://doi.org/10.1016/j.procbio.2009.03.007
  21. Jeon, S. I., Mun, S. and Kim, J. H., "Optimal Temperature Control in Fractional Precipitation for Paclitaxel Pre-purification," Process Biochem., 41, 276-280(2006). https://doi.org/10.1016/j.procbio.2005.07.016
  22. Kim, J. H., Kang, I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "Fractional Precipitation for Paclitaxel Pre-purification From Plant Cell Cultures of Taxus chinensis," Biotechnol, Lett., 22, 1753-1756 (2000). https://doi.org/10.1023/A:1005642001815
  23. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large Scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis," Process Biochem., 39, 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  24. Lee, J. Y. and Kim, J. H., "Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation," Korean J. Microbiol. Biotechnol., 40, 169-174(2012). https://doi.org/10.4014/kjmb.1202.02005
  25. Dong, Y., Ng, W. K., Shen, S., Kim, S. and Tan, R. B., "Preparation and Characterization of Spironolactone Nanoparticles by Antisolvent Precipitation," Int. J. Pharm., 375, 84-88(2009). https://doi.org/10.1016/j.ijpharm.2009.03.013
  26. Zhang, H. X., Wang, J. X., Zhang, Z. B., Le, Y., Shen, Z. G. and Chen, J. F., "Micronization of Atorvastatin Calcium by Antisolvent Precipitation Process," Int. J. Pharm., 374, 106-113(2009). https://doi.org/10.1016/j.ijpharm.2009.02.015
  27. Gamborg, O. L., Miller, R. A. and Ojima, K., "Nutrient Requirements of Suspension Cultures of Soybean Root Cells," Exp. Cell Res., 50, 151-158(1968). https://doi.org/10.1016/0014-4827(68)90403-5
  28. Lee, C. G. and Kim, J. H., "Optimization of Adsorbent Treatment Process for the Purification of Paclitaxel from Plat Cell Cultures of Taxus chinensis," Korean Chem. Eng. Res., 52, 497-502(2014). https://doi.org/10.9713/kcer.2014.52.4.497
  29. Dalvi, S. V. and Dave, R. N., "Controlling Particle Size of a Poorly Water-soluble Drug Using Ultrasound and Stabilizers in Antisolvent Precipitation," Ind. Eng. Chem. Res., 48, 7581-7593(2009). https://doi.org/10.1021/ie900248f
  30. Labouret, A. D., Thioune, O., Fessi, H., Devissaguet, J. P. and Puisieux, F., "Application of An Original Process for Obtaining Colloidal Dispersions of Some Coating Polymers Preparation, Characterization, Industrial Scale-up," Drug Dev. Ind. Pharm., 21, 229-241(1995). https://doi.org/10.3109/03639049509048106
  31. Stainmesse, S., Orecchioni, A. M., Nakache, E., Puisieux, F. and Fessi, H., "Formation and Stabilization of a Biodegradable Polymeric Colloidal Suspension of Nanoparticles," Colloid Polym. Sci., 273, 505-511(1995). https://doi.org/10.1007/BF00656896
  32. Thioune, O., Fessi, H., Devissaguet, J. P. and Puisieux, F., "Preparation of Pseudolatex by Nanoprecipitation: Influence of the Solvent Nature on Intrinsic Viscosity and Interaction Constant," Int. J. Pharm., 146, 233-238(1997). https://doi.org/10.1016/S0378-5173(96)04830-2
  33. Pouretedal, H. R., "Preparation and Characterization of Azithromycin Nanodrug Using Solvent/antisolvent Method," Int. Nano Lett., 4,103(2014).
  34. Ryu, H. K. and Kim, J. H., "Effect of Zeta Potential on Fractional Precipitation for the Purification of Paclitaxel from Pant Cell Cultures of Taxus chinensis," Korean J. Microbiol. Biotechnol., 42, 114-120(2014). https://doi.org/10.4014/kjmb.1404.04002

Cited by

  1. 분별침전에서 친수성 고분자 물질을 이용한 (+)-dihydromyricetin의 입자크기 감소 vol.56, pp.3, 2016, https://doi.org/10.9713/kcer.2018.56.3.370