DOI QR코드

DOI QR Code

A deep learning analysis of the Chinese Yuan's volatility in the onshore and offshore markets

딥러닝 분석을 이용한 중국 역내·외 위안화 변동성 예측

  • Lee, Woosik (Department of Information Statistics, Anyang University) ;
  • Chun, Heuiju (Department of Statistics &Information Science, Dongduk Women's University)
  • 이우식 (안양대학교 정보통계학과) ;
  • 전희주 (동덕여자대학교 정보통계학과)
  • Received : 2016.02.11
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

The People's Republic of China has vigorously been pursuing the internationalization of the Chinese Yuan or Renminbi after the financial crisis of 2008. In this view, an abrupt increase of use of the Chinese Yuan in the onshore and offshore markets are important milestones to be one of important currencies. One of the most frequently used methods to forecast volatility is GARCH model. Since a prediction error of the GARCH model has been reported quite high, a lot of efforts have been made to improve forecasting capability of the GARCH model. In this paper, we have proposed MLP-GARCH and a DL-GARCH by employing Artificial Neural Network to the GARCH. In an application to forecasting Chinese Yuan volatility, we have successfully shown their overall outperformance in forecasting over the GARCH.

2008년 글로벌 금융위기 이후 중국은 위안화 국제화의 점진적 추진을 진행하면서 중국상하이 외환시장과 중국홍콩 외환시장에서 거래되는 통화인 역내위안화와 역외위안화를 형성시켰다. 본 연구는 위안화 국제화와 점진적인 중국 자본계정 개방에 따라 급변하는 외환시장상황의 변동성을 정확하게 파악하기 위해서 GARCH모형 (일반화된 자기회귀 조건부이분산성모형)에 다단계인공신경망을 결합한 MLP-GARCH 모형과 GARCH모형과 기계학습의 일종인 딥러닝 (deep learning)을 통합한 DL-GARCH을 가지고 위안화 변동성예측을 비교 실험과 분석을 하였다. 비교분석 결과 DL-GARCH 모형은 MLP-GARCH보다 모형 위안화 역내 외 환율변동성 예측 면에서 더욱 더 개선된 예측값을 제공하였다. 그래서 이분산시계열모형을 딥러닝과 결합한 DL-GARCH 모형은 시계열의 환율 변동성 예측 문제에 딥러닝을 응용할 수 있음을 확인하였다. 향후 이분산시계열과 결합된 딥러닝 모형은 다른 금융시계열 데이터에 응용하여 그 일반화 가능성을 높일 수 있을 것이다.

Keywords

References

  1. Blurn, A. and Langrey, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97, 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
  2. Bollerslev, T. (1982). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327.
  3. Brooks, C. (1998). Predicting stock index volatility: Can market volume help? Journal of Forecasting, 17, 59-80. https://doi.org/10.1002/(SICI)1099-131X(199801)17:1<59::AID-FOR676>3.0.CO;2-H
  4. Choi, H. and Min, Y. (2015). Introduction to deep learning. Korea Information Processing Society Review, 22, 7-21.
  5. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation. Econometrica 50, 987-1008. https://doi.org/10.2307/1912773
  6. Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507. https://doi.org/10.1126/science.1127647
  7. Kang, I. (2009). An empirical study on efficient forecasting method of Korea and Asian emerging stock market's volatility. Korean Journal of Financial Engineering, 8, 25-46.
  8. Kim, K., Cho, M. and Park, E. (2008). Forecasting the volatility of KOSPI 200 using data mining, Journal of the Korean Data & Information Science Society, 19, 1305-1325.
  9. Lee, W. and Chun, H. (2015). A study on the relationship between the onshore and offshore Chinese Yuan markets, Journal of the Korean Data & Information Science Society, 26, 1387-1395. https://doi.org/10.7465/jkdi.2015.26.6.1387
  10. Roh, T. H., Lee, T. and Han, I. (2005). Forecasting the volatility of KOSPI 200 using neural networkfinancial time series model. Korean Management Review, 34, 683-713.
  11. Roh, T. H. (2013). Integration model of econometric time series for volatility forecasting. Korean Management Consulting Review, 13, 313-340.
  12. Schmidhuber, J. (2015). Deep learning in neural networks : An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  13. Song, J. and Ko, B. (2013). Testing the exchange rate data for the parameter change based on ARMAGARCH model. Journal of the Korean Data & Information Science Society, 24, 1551-1559. https://doi.org/10.7465/jkdi.2013.24.6.1551
  14. SWIFTWatch Standard Chartered, RMB services, https://www.sc.com/en/banking-services/renminbi/.
  15. Weigend, A. S. and Shi, S. (1998). Predicting daily probability distributions of S&P 500 returns, Information Systems Working Papers Series-98-23, Stern School of Business, New York University, New York.

Cited by

  1. An empirical study of Chinese consumers' lifestyle by country of origin effect of mobile phone vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1565
  2. Time series models based on relationship between won/dollar and won/yen exchange rate vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1547
  3. 정규혼합모형의 오차를 갖는 GARCH 모형을 이용한 옵션가격결정에 대한 실증연구 vol.28, pp.2, 2016, https://doi.org/10.7465/jkdi.2017.28.2.251
  4. 딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측 vol.28, pp.2, 2017, https://doi.org/10.7465/jkdi.2017.28.2.287
  5. ETF 위험관리에 관한 연구 vol.28, pp.4, 2016, https://doi.org/10.7465/jkdi.2017.28.4.843
  6. 딥러닝 모형의 복잡도에 관한 연구 vol.28, pp.6, 2016, https://doi.org/10.7465/jkdi.2017.28.6.1217
  7. 두 이종 혼합 모형에서의 수정된 경사 하강법 vol.28, pp.6, 2016, https://doi.org/10.7465/jkdi.2017.28.6.1245
  8. 고차원 자료에서 영향점의 영향을 평가하기 위한 그래픽 방법 vol.28, pp.6, 2016, https://doi.org/10.7465/jkdi.2017.28.6.1291
  9. Artificial neural network algorithm comparison for exchange rate prediction vol.12, pp.3, 2016, https://doi.org/10.7236/ijibc.2020.12.3.125