DOI QR코드

DOI QR Code

Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model

CCHE1D 모형을 이용한 저수지 붕괴에 따른 하상변동 해석

  • Received : 2015.11.19
  • Accepted : 2016.03.10
  • Published : 2016.04.01

Abstract

This study presents the analysis of flood and bed deformation caused by reservoir failure. The CCHE1D is used to simulate 1D non-uniform, non-equilibrium sediment transport and bed deformation. The CCHE1D deals with the adaptation length for non-equilibrium sediment, classified sediment particle for non-uniform sediment and mixing layer for the exchange with the sediment moving with the flow. The model is applied to Ha!Ha! river basin where was experienced reservoir failure in 1996 to analyze non-uniform and non-equilibrium sediment transport. The calculations are compared with morphological bed changes of pre- and post-flood. In addition, model sensitivity to main parameters involving adaptation length ($L_{s,b}$), non-equilibrium coefficient (${\alpha}_s$), mixing layer thickness (${\delta}_m$) and porosity (p') is analyzed. The results indicates that thalweg change is the most sensitive to non-equilibrium coefficient (${\alpha}_s$) among those parameters in the study area.

본 연구에서는 저수지의 붕괴로 인한 하류부 하천의 하상변동에 대한 해석을 수행하였다. 저수지 붕괴에 따른 1차원 비평형, 비균일 유사의 이송과 하상 변동을 연구를 위해 CCHE1D 모형을 이용하였다. CCHE1D 모형은 비평형 및 비균일 유사해석을 위해 조정거리와 분류된 입자의 입경을 사용하며, 하상 물질의 교환을 위한 혼합층의 개념이 사용된다. CCHE1D 모형을 1996년 저수지 붕괴가 발생한 Ha!Ha!강 유역에 적용하여 저수지 붕괴로 인한 하류부의 비평형, 비균일 유사이송을 해석하고, 계산 결과를 저수지 붕괴전 후에 하류부 실측 하상과 비교하였다. 또한, 조정계수($L_{s,b}$), 비평형 계수(${\alpha}_s$), 혼합층 두께(${\delta}_m$), 공극률(p')을 포함하는 주요 매개변수에 대한 민감도를 분석하였으며, 대상유역에서는 비평형 계수가 하상변동에 가장 큰 영향을 주는 것으로 나타났다.

Keywords

References

  1. Ahn, J. and Yang, C. T. (2014). "Simulation of lateral migration of all American canal with semi-two dimensional sediment transport model." KSCE Journal of Civil Engineering, Vol. 18, No. 6, pp. 1896-1903. https://doi.org/10.1007/s12205-014-0311-y
  2. Ahn, J. and Yang, C. T. (2015). "Determination of recovery factor for simulation of non-equilibrium sedimentation in reservoir." International Journal of Sediment Research, Vol. 39, No. 1, pp. 68-73.
  3. Ahn, J. and Yen, H. (2015). "Semi-two dimensional numerical prediction of non-equilibrium sediment transport in reservoir using stream tubes and theory of minimum stream power." KSCE Journal of Civil Engineering, Vol. 19, No. 6, pp. 1922-1929. https://doi.org/10.1007/s12205-014-0098-x
  4. Ahn, J., Yang, C. T., Boyd, P. M., Pridal, D. B. and Remus, J. I. (2013). "Numerical modeling of sediment flushed from lewis and clark lake." International Journal of Sediment Research, Vol. 28, No. 2, pp. 182-193. https://doi.org/10.1016/S1001-6279(13)60030-X
  5. Ahn, J. M. and Lyu S. W. (2013). "Analysis of flow and bed change on hydraulic Structure using CCHE2D : Focusing on Changnyong-Haman." Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 707-717 (In Korean). https://doi.org/10.3741/JKWRA.2013.46.7.707
  6. Brooks, G. R. and Lawrence, D. E. (1999). "The drainage of the Lake Ha!Ha! reservoir and downstream geomorphic impacts along Ha!Ha! River, Saguenay area, Quebec, Canada." Geomorphology, Vol. 28, No. 1-2, pp. 141-167. https://doi.org/10.1016/S0169-555X(98)00109-3
  7. Capart, H., Spinewine, B., Young, D. L., Zech, Y., Brooks, G. R., Leclerc, M. and Secretan, Y. (2007). "The 1996 lake Ha! Ha! breakout flood, quebec: Test data for geomorphic flood routing methods." Journal of Hydraulic Research, Vol. 45, Extra Issue, pp. 97-109. https://doi.org/10.1080/00221686.2007.9521836
  8. Choi, B. H. (2015). Disaster Risk Analysis and Management Improvement Plans of Agricultural Reservoirs, Master's Thesis, Kyungpook National University, Daegu, Korea (in Korean).
  9. CSTGB (Commission scientifique et technique sur la gestion des barrages) (1997). Rapport: Commission scientifique et technique sur la gestion des barrages. Quebec, Janvier 1997, p. 241.
  10. Davies, A. G., van Rijn, L. C., Damgaard, J. S., van de Graaff, Jand J. and Ribberink, J. S. (2002), "Intercomparison of research and practical sand trans-port models." Coastal Engineering, Vol. 46, No. 1, pp. 1-23. https://doi.org/10.1016/S0378-3839(02)00042-X
  11. Ding, Y. and Altinakar, M. S. (2015). "Simulation and control of morphological changes due to dam removal in the Sandy River, Oregon, USA." Proceedings of the International Association of Hydrological Sciences, No. 367, pp. 207-214.
  12. El kadi Abderrezzak, K. and Paquier, A. (2009). "One-dimensional numerical modeling of sediment transport and bed deformation in open channels." Water Resources Research, Vol. 45, No. 5, W05404. https://doi.org/10.1029/2008WR007134
  13. Garbrecht, J., Kuhnle, R. and Alonso, C. (1995). "A sediment transport capacity formulation for application to large channel networks." Journal of Soil and Water Conservation, Vol. 50, No. 5, pp. 527-529.
  14. Gessese, A. and Yonas, M. (2008). "Prediction of sediment inflow to Legedadi reservoir using SWAT Watershed and CCHE1D." Nile Basin Water Engineering Scientific Magazine, Vol. 1, pp. 65-74.
  15. Hwang, S. D., Choi, S. H., Lee, S. J. and Jang, C. L. (2013). "Long-term riverbed change simulation and analisys in the river." Journal of Korea Spatial information Society, Vol. 21, No. 5. pp. 1-6 (In Korean).
  16. INRS-Eau (1997). Simulation hydrodynamique et bilan sedimentaire des rivières Chicoutimi et des Ha!Ha! suite aux crues exceptionnelles de juillet 1996. Rapport INRS-Eau No. R487, Travaux realises pour le compte de la Commission scientifique et technique sur la gestion des barrages, p. 207.
  17. Jeong, W. J., Ji, U. and Yeo, W. K. (2010). "Sensitivity analysis of bed changes for different sediment transport formulas using the HEC-6 model -The lower nakdong river." Journal of the Environmental Sciences, Vol. 19, No. 10, pp. 1219-1227 (In Korean). https://doi.org/10.5322/JES.2010.19.10.1219
  18. Proffitt, G. T. and Sutherland, A. J. (1983). "Transport of non-uniform sediments." Journal of Hydraulic Research, Vol. 21, No. 1, pp. 33-43. https://doi.org/10.1080/00221688309499448
  19. Son, A. L., Kim, B. H., Moon, B. R. and Han, K. S. (2015). "An analysis of bed change characteristics by bed protection work." Journal of the Korean Society of Civil Engineer, Vol. 35, No. 4, pp. 821-834 (In Korean). https://doi.org/10.12652/Ksce.2015.35.4.0821
  20. Son, I. H., Kim, B. H. and Han, K. Y. (2015). "Flood risk analysis considering the sediment transport in a river." Proceedings of the Korea Water Resources Association Conference, Gosung, Korea, pp. 132 (In Korean).
  21. Wu, W. (2008). Computational River Dynamics, Taylor & Francis Group, London, UK.
  22. Wu, W. and Vieira, D. A. (2002). One-dimensional channel network model CCHE1D version 3.0-Technical manual. Technical report No. NCCHE-TR-2002-1. National Center for Computational Hydroscience and Engineering, The University of Mississippi, Oxford, MS.
  23. Wu, W. and Wang, S. (2008). "Simulation of morphological evolution near sediment mining pits using a 1-D mixed-regime flow and sediment transport model." World Environmental and Water Resources Congress, pp. 1-10.
  24. Wu, W., Wang, S. S. Y. and Jia, Y. (2000). "Nonuniform sediment transport in alluvial rivers." Journal of Hydraulic Research, Vol. 38, No. 6, pp. 427-434. https://doi.org/10.1080/00221680009498296