DOI QR코드

DOI QR Code

Novel Algicidal Substance (Naphthoquinone Group) from Bio-derived Synthetic Materials against Harmful Cyanobacteria, Microcystis and Dolichospermum

유해 남조류 Microcystis와 Dolichospermum에 대하여 선택적 제어가 가능한 생물유래 살조물질 (Naphthoquinone 계열)

  • Joo, Jae-Hyoung (Department of Life Science, Hanyang University) ;
  • Cho, Hoon (Department of Polymer Science and Engineering, Chosun University) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University)
  • 주재형 (한양대학교 생명과학과) ;
  • 조훈 (조선대학교 응용화학소재공학과) ;
  • 한명수 (한양대학교 생명과학과)
  • Received : 2016.03.07
  • Accepted : 2016.03.20
  • Published : 2016.03.31

Abstract

We developed a biologically-derived substance naphthoquinone (NQ) derivate for the eco-safe mitigation of harmful cyanobacteria blooms such as Microcystis and Dolichospermum. NQ was reacted with various substituents ($R_n$) to produce different NQ derivatives. We tested a total of 92 algicidal compounds based on the algicidal activity of Microcystis and Dolichospermum. 22 compounds of NQ were selected as candidates (algicidal activity >80% at $1{\mu}M$). Among them, NQ 40 compound showed the highest algicidal activity of 99.6% and 100% at the optimal concentration of $1{\mu}M$ on Microcystis and Dolichospermum, respectively. No algicidal effects of NQ 40 ($1{\mu}M$) were observed against non-target algae such as Stephanodiscus, Cyclotella and Peridinium. According to the results of acute eco-toxicity assessment, the $EC_{50}$ values of NQ 40 compound for Selenastrum capricornutum and Daphnia magna were 3.2 and $14.5{\mu}M$, respectively, and the $LC_{50}$ for Danio rerio was $15.7{\mu}M$. In addition, for D. magna chronic eco-toxicity assessment, no toxicity toward survival, growth and reproduction was observed. Therefore, we suggested the NQ 40 ($1{\mu}M$) compound as an alternative eco-safe algicidal substance to effectively mitigate harmful cyanobacteria blooms.

유해 남조류 Microcystis와 Dolichospermum의 친환경적인 제어를 위해 생물유래 물질을 기반으로 한 Naphthoquinone(NQ) 계열의 녹조제어 물질을 개발하였다. NQ의 기본구조를 바탕으로 치환기 ($R_n$)를 변화시켜 총 92종의 NQ 유도체를 합성 확보하였고, 대상 남조류 Microcystis와 Dolichospermum에 대하여 농도별 살조효과를 평가하여 $1{\mu}M$의 농도에서 80% 이상의 제어가 가능한 NQ 화합물을 각각 22종을 선정하였다. 그 중에서, NQ 40 물질은 최적 적용 농도인 $1{\mu}M$에서 Microcystis와 Dolichospermum 종에 각각 99.6%과 100%의 높은 제어효과가 관찰되었다. NQ 40 물질 ($1{\mu}M$)은 규조류 Stephanodiscus, Cyclotella와 와편모조류 Peridinium에는 살조효과가 없었으며, 대상 유해 남조류 Microcystis와 Dolichospermum에만 선택적으로 작용하였다. 또한, NQ 40 물질의 급성독성을 평가 결과, Selenastrum capricornutum, Daphnia magna 및 Danio rario 종에 대하여 $EC_{50}$/$LC_{50}$ 값이 각각 3.2, 14.5 및 $15.7{\mu}M$로 측정되었다. 더불어, D. magna를 이용한 만성독성 평가 결과, NQ 40 물질 $1{\mu}M$에서 생존, 성장, 번식에 대한 영향은 없었다. 따라서, 최종 선정된 NQ 40 물질을 현장에서 $1{\mu}M$로 적용한다면, 다른 수생생물에 미치는 영향 없이 대상 조류인 Microcystis와 Dolichospermum 종만 선택적으로 제어 가능한 친환경적인 살조물질로 사용될 것으로 판단된다.

Keywords

References

  1. Beakes, G., Canter, H.M. and Jaworski, G.H.M. 1988. Zoospores ultrastructure of Zygorhizidium affluens Canter and Z. planktonicum Canter, two chytrids parasitizing the diatom Asterionella formosa Hassall. Canadian Journal of Botany 66: 1054-1067. https://doi.org/10.1139/b88-151
  2. Bertoloni, G., Rossi, F., Valduga, G., Jori, G., Ali, H. and Van Lier, J. 1992. Photosensitizing activity of water-soluble and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial-cells. Microbios 71: 33-46.
  3. Biggins, J. 1990. Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the AI acceptor site of the photosystem I reaction center. Biochemistry 29: 7259-7264. https://doi.org/10.1021/bi00483a014
  4. Byun, J.H., Joo, J.H., Kim, B.H. and Han, M.S. 2015. Application possibility of naphthoquinone derivative NQ 4-6 for mitigation of winter diatom bloom. Ecology and Resilient infrastructure 2: 224-236. (in Korean) https://doi.org/10.17820/eri.2015.2.3.224
  5. Codd, G.A., Morrison, L.F. and Metcalf, J.S. 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203(3): 264-272. https://doi.org/10.1016/j.taap.2004.02.016
  6. Combs, A.B., Porter, T.H. and Folkers, K. 1976. Anticoagulant activity of a naphthoquinone analog of vitamin K and an inhibitor of coenzyme Q10-enzyme systems. Research Communications in Chemical Pathology and Pharmacology 13: 109-114.
  7. De Oliveira-Filho, E.C., Lopes, R.M. and Paumgartten, F.J.R. 2004. Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56(4): 369-374. https://doi.org/10.1016/j.chemosphere.2004.04.026
  8. Dong, Y., Chin, S.F., Blanco, E., Bey, E.A., Kabbani, W., Xie, X.J., Bornmann, W.G., Boothman, D.A. and Gao, J. 2009. Intratumoral delivery of betalapachone via polymer implants for prostate cancer therapy. Clinical Cancer Research 15: 131-139. https://doi.org/10.1158/1078-0432.CCR-08-1691
  9. Duke, S.O., Dayan, F.E., Rimando, A.M., Schrader, K.K., Aliotta, G., Oliva, A. and Romagni, J.G. 2002. Chemicals from nature for weed management. Weed Science 50(2): 138-151. https://doi.org/10.1614/0043-1745(2002)050[0138:IPCFNF]2.0.CO;2
  10. Findlay, J.W. and Dillard, R.F. 2007. Appropriate calibration curve fitting in ligand binding assays. The American Association of Pharmaceutical Scientists Journal 9(2): E260-E267.
  11. Gumbo, R.J., Ross, G. and Cloete, T. 2010. The isolation and identification of predatory bacteria from a Microcystis algal bloom. African Journal of Biotechnology 9: 663-671. https://doi.org/10.5897/AJB09.834
  12. Harn, Y., Choi, C.K., Shin, H.S. 2010. A study on the oxidative transformation of quinone compound using nanostructured black-birnessite. Environmental Engineering Research 32: 547-554. (in Korean)
  13. Hobson, P., Fazekas, C., House, J., Daly, R. I., Kildea, T., Giglio, S. and Chen, Y.M. 2010. Tastes and Odours in Reservoirs-Research Report 73. Water Quality Research Australia, Adelaide, Australia.
  14. Jancula, D., Drabkova, M., cerny, J., Karaskova, M., Korinkova, R., Rakusan, J. and Marsalek, B. 2008. Algicidal activity of phthalocyanines-screening of 31 compounds. Environmental Toxicology 23(2): 218-23. https://doi.org/10.1002/tox.20324
  15. Jewess, P.J., Higgins, J., Berry, K.J., Moss, S.R., Boogaard, A.B. and Khambay, B.P.S. 2002 Herbicidal action of 2-hydroxy-3-alkyl-1,4-naphthoquinones. Pest Management Science 58(3): 234-242. https://doi.org/10.1002/ps.428
  16. Jori, G. and Brown, S.B. 2004. Photosensitized inactivation of microorganisms. Photochemical & Photobiological Sciences 3: 403-405. https://doi.org/10.1039/b311904c
  17. Joo, J.H., Kang, Y.H., Park, B.S., Park, C.S., Cho, H. and Han, M.S. 2015. A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms. Journal of Applied Phycology 1: 1-12.
  18. Koss, A.M. and Snyder, W.E. 2005. Alternative prey disrupt biocontrol by a guild of generalist predators. Biological Control 32: 243-251. https://doi.org/10.1016/j.biocontrol.2004.10.002
  19. Lim, B.J., Kim, S.H. and Jun, S.O. 2002. Application of various plants as an inhibitor of algal growth: studies in barge enclosure and artificially eutrophicated pond. Korean Journal of Limnology 35: 123-132. (in Korean)
  20. Lurling, M. and Oosterhout, F.V. 2013. Case study on the efficacy of a lanthanum-enriched clay (Phoslock$^{(R)}$) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710: 253-263. https://doi.org/10.1007/s10750-012-1141-x
  21. Monks, T.J., Hanzlik, R.P., Cohen, G.M., Ross, D. and Graham, D.G. 1992. Quinone chemistry and toxicity. Toxicology and Applied Pharmacology 112: 2-16. https://doi.org/10.1016/0041-008X(92)90273-U
  22. Menna-Barreto, R.F., Correa, J.R., Cascabulho, C.M., Fernandes, M.C., Pinto, A.V., Soares, M.J. and De Castro, S.L. 2009. Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136: 499-510. https://doi.org/10.1017/S0031182009005745
  23. Nakai, S., Inoue, Y., Hosomi, M. and Murakami, A. 2000. Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research 34: 3026-3032. https://doi.org/10.1016/S0043-1354(00)00039-7
  24. Nakai, S., Yamada, S. and Hosomi, M. 2005. Anticyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia 543: 71-78. https://doi.org/10.1007/s10750-004-6822-7
  25. NIES. 2004. Microalgae and protozoa. In, Watanabe, M.M., Hiroki, M., Kasai, F., Kawachi, M., Shimizu, A., Erata, M., Mori, F. and Yumoto, K. (eds), NIES-Collection: List of Strains, National Institute for Environmental Studies, Tsukuba, Japan, pp. 50-51.
  26. O'Brien, P.J. 1991. Molecular mechanisms of quinone cytotoxicity. Chemico-Biological Interactions 80: 1-41. https://doi.org/10.1016/0009-2797(91)90029-7
  27. OECD. 1992. Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, Organization for Economic Cooperation and Development Publishing, Paris, France.
  28. OECD. 1996. Guidelines for Testing of Chemicals. Proposal for Updated Guideline 211, Daphnia magna Reproduction Test. Organization for Economic Cooperation and Development, Paris, France.
  29. OECD. 2004. Test No. 202: Daphnia sp., Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, Organization for Economic Cooperation and Development Publishing, Paris, France.
  30. OECD. 2011. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, Organization for Economic Cooperation and Development Publishing, Paris, France.
  31. Orvos, D.R., Versteeg, D.J., Inauen, J., Capdevielle, M., Rothenstein, A. and Cunningham, V. 2002. Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry 21: 1338-1349. https://doi.org/10.1002/etc.5620210703
  32. Oliveira, R., Domingues, I., Grisolia, C.K. and Soares, A. 2009. Effects of triclosan on zebrafish earlylife stages and adults. Environmental Science and Pollution Research 16(6): 679-688. https://doi.org/10.1007/s11356-009-0119-3
  33. Park, M.H., Lee, S.J., Yoon, B.D. and Oh, H.M. 2001. Effects of cell CaSi and bioflocculant on the control of algal bloom. Korean Journal of Environmental Biology 19: 129-135. (in Korean)
  34. Schrader, K.K., Nanayakkara, N.D., Tucker, C.S., Rimando, A.M., Ganzera, M. and Schaneberg, B.T. 2003. Novel derivatives of 9, 10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Applied and Environmental Microbiology 69: 5319-5327. https://doi.org/10.1128/AEM.69.9.5319-5327.2003
  35. Segalla, A., Borsarelli, C.D., Braslavsky, S.E., Spikes, J.D., Roncucci, G., Dei, D., Chiti, G., Jori, G. and Reddi, E. 2002. Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn (II)-phthalocyanine. Photochemical & Photobiological Sciences 1: 641-648. https://doi.org/10.1039/b202031a
  36. Shao, J., Xu, Y., Wang, Z., Jiang, Y., Yu, G., Peng, X. and Li, R. 2011. Elucidating the toxicity targets of ${\beta}$-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquatic Toxicology 104: 48-55. https://doi.org/10.1016/j.aquatox.2011.03.014
  37. Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K. and Arizono, K. 2003. Effects of triclosan on various aquatic organisms. Environmental Sciences 11: 133-140.
  38. Wu, Y., Liu, J., Yang, L., Chen, H., Zhang, S., Zhao, H. and Zhang, N. 2011. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environmental Microbiology 13: 604-615. https://doi.org/10.1111/j.1462-2920.2010.02363.x
  39. Yamamoto, Y., Kouchiwa, T., Hodoki, Y., Hotta, K., Uchida, H. and Harada, K.I. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. Journal of Applied Phycology 10: 391-397. https://doi.org/10.1023/A:1008077414808
  40. Yamamoto, M., Murai, H. Takeda, A., Okunishi, S. and Morisaki, S. 2005. Bacterial flora of the biofilm Formed on the submerged surface of the reed Phragmites australis. Microbes and Environments 20: 14-24. https://doi.org/10.1264/jsme2.20.14
  41. Zamyadi, A., Sawade, E., Ho, L., Newcombe, G. and Hofmann, R. 2015. Impact of UV-$H_2O_2$ advanced oxidation and aging processes on GAC capacity for the removal of cyanobacterial taste and odor compounds. Environmental Health Insights 9 (Suppl 3): 1.0

Cited by

  1. Improvement of cyanobacterial-killing biologically derived substances (BDSs) using an ecologically safe and cost-effective naphthoquinone derivative vol.141, 2017, https://doi.org/10.1016/j.ecoenv.2017.02.006
  2. 다양한 환경에서의 효율적 녹조 저감을 위한 Naphthquinone 물질의 담체화 기술 개발 및 이에 따른 생태계 변화 모니터링 vol.34, pp.4, 2016, https://doi.org/10.11626/kjeb.2016.34.4.281
  3. 유해 남조류 제어를 위한 생물유래 살조물질 Naphthoquinone 유도체 (NQ 2-0)의 현장 적용 가능성 vol.4, pp.3, 2016, https://doi.org/10.17820/eri.2017.4.3.130
  4. 생물유래 살조물질 Naphthoquinone 유도체의 규조 Stephanodiscus 제어 효과 및 생태계 변화 모니터링: A case study vol.7, pp.1, 2016, https://doi.org/10.17820/eri.2020.7.1.072