DOI QR코드

DOI QR Code

Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application

수열합성법으로 합성된 산화아연 나노 구조 박막의 광촉매적 응용

  • Shinde, N.M. (Nano ElectroMechanical Device Laboratory, School of Mechanical Eng., Yonsei University) ;
  • Nam, Min Sik (Nano ElectroMechanical Device Laboratory, School of Mechanical Eng., Yonsei University) ;
  • Patil, U.M. (Nano ElectroMechanical Device Laboratory, School of Mechanical Eng., Yonsei University) ;
  • Jun, Seong Chan (Nano ElectroMechanical Device Laboratory, School of Mechanical Eng., Yonsei University)
  • Received : 2015.08.27
  • Accepted : 2015.12.01
  • Published : 2016.03.30

Abstract

ZnO has nanostructured material because of unique properties suitable for various applications. Amongst all chemical and physics methods of synthesis of ZnO nanostructure, the hydrothermal method is attractive for its simplicity and environment friendly condition. Nanostructure ZnO thin films have been successfully synthesized on fluorine doped tin oxide (FTO) substrate using hydrothermal method. A possible growth mechanism of the various nanostructures ZnO is discussed in schematics. The prepared materials were characterized by standard analytical techniques, i.e., X-ray diffraction (XRD) and Field-emission scanning electron microscopy (SEM). The XRD study showed that the obtained ZnO nanostructure thin films are in crystalline nature with hexagonal wurtzite phase. The SEM image shows substrate surface covered with nanostructure ZnO nanrod. The UV-vis absorption spectrum of the synthesized nanostructure ZnO shows a strong excitonic absorption band at 365 nm which indicate formation nanostructure ZnO thin film. Photoluminescence spectra illustrated two emission peaks, with the first one at 424 nm due to the band edge emission of ZnO and the second broad peak centered around 500 nm possibly due to oxygen vacancies in nanostructure ZnO. The Raman measurements peaks observed at $325cm^{-1}$, $418cm^{-1}$, $518cm^{-1}$ and $584cm^{-1}$ indicated that nanostrusture ZnO thin film is high crystalline quality. We trust that nanostructure ZnO material can be effectively will be used as a highly active and stable phtocatalysis application.

산화아연은 다양한 나노 구조와 특유의 특성으로 인하여 여러 분야에서 많은 관심을 받고있는 물질이다. 산화아연을 합성하는 다양한 방법 중에서, 수열합성법은 간단하고 친환경적인 장점을 가지고 있다. 나노 구조를 가지는 산화아연 박막은 수열합성법을 통하여 FTO 전극 위에 제작되었다. 성장된 산화아연은 X-ray diffraction (XRD)와 Field-emission scanning electron microscopy (FESEM)을 통하여 분석되었다. XRD 분석에서 산화아연 박막이 자연상태의 hexagonal wurtzite 상으로 구성되어 있음을 확인하였으며 SEM 사진에서는 나노 로드 형태를 구성하고 있는 것을 확인할 수 있었다. 본 연구에서는 UV 영역의 흡수 스펙트럼을 분석하여 산화아연이 보이는 365 nm 파장에서의 흡수를 확인하였다. 또한 photoluminescence 방출을 분석한 결과, 424 nm의 band edge emission과 500 nm에서 산화아연의 oxygen vacancies에 의한 방출을 확인하였다. 또한 라만 스펙트럼 분석을 통하여 본 연구진이 제작한 산화아연이 높은 결정성을 가지고 있는 것을 확인할 수 있었다. 이러한 연구를 통하여 다양한 특성을 가진 산화아연의 광촉매적 적용을 기대할 수 있다.

Keywords

References

  1. X. Fan, M. L. Zhang, I. Shafiq, W. J. Zhang, C. S. Lee and S. T. Lee, Adv. Mater., 21, 2009, 2393. https://doi.org/10.1002/adma.200802049
  2. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater., 13, 2001, 113. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  3. Mashkoor Ahmad and Jing Zhu, J. Mater. Chem., 2011, 21, 599. https://doi.org/10.1039/C0JM01645D
  4. Emanetoglu N W, Gorla C, Liu Y, Liang S and Lu Y 1999 Mater. Sci. Semicond. Process 2 247. https://doi.org/10.1016/S1369-8001(99)00022-0
  5. Chen Y, Bagnall D and Yao T 2000 Mater. Sci. Eng. B 75 190. https://doi.org/10.1016/S0921-5107(00)00372-X
  6. Liang S, Sheng H, Liu Y, Hio Z, Lu Y and Chen H 2001, J. Cryst. Growth 225 110. https://doi.org/10.1016/S0022-0248(01)00830-2
  7. Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I and Koumoto K 2002 Adv. Mater. 14 418. https://doi.org/10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-K
  8. Lee J Y, Choi Y S, Kim J H, Park M O and Im S 2002 Thin, Solid Films 403 533.
  9. Mitra A, Chatterjee A P and Maiti H S 1998 Mater. Lett. 35 33. https://doi.org/10.1016/S0167-577X(97)00215-2
  10. Koch M H, Timbrell P Y and Lamb R N 1995 Semicond. Sci.Technol. 10 1523. https://doi.org/10.1088/0268-1242/10/11/015
  11. Gratzel M 2005 MRS Bull. 30 39374.
  12. Baxter J B, Walker A M, van Ommering K and Aydil E S 2006, Nanotechnology 17 S304. https://doi.org/10.1088/0957-4484/17/11/S13
  13. Lin Y, Zhang Z, Tang Z, Yuan F and Li J 1999 Adv. Mater. Opt. Electron. 9 205. https://doi.org/10.1002/1099-0712(199909/10)9:5<205::AID-AMO383>3.0.CO;2-8
  14. Padmavathy N and Vijayaraghavan R 2008 Sci. Technol. Adv. Mater. 9 035004. https://doi.org/10.1088/1468-6996/9/3/035004
  15. Iijima S 1991 Nature 354 56. https://doi.org/10.1038/354056a0
  16. Cui Y, Lauhon L J and Gudiksen M S 2001 Appl. Phys. Lett. 78 2214. https://doi.org/10.1063/1.1363692
  17. Burghard G M, Kim G T, Dusberg G S, Chiu P W, Krstic V, Roth S and Han W Q 2001 J. Appl. Phys. 90 5747. https://doi.org/10.1063/1.1413495
  18. Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature. 409 66. https://doi.org/10.1038/35051047
  19. Bai Z G, Yu D P, Zhang H Z, Ding Y, Gai S Q, Hang X Z, Hiong Q L and Feng G C 1999 Chem. Phys. Lett. 303 311. https://doi.org/10.1016/S0009-2614(99)00066-4
  20. Huang M H, Wu Y, Feick H, Tran N, Webe E and Yang P 2001, Adv. Mater. 13 113. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  21. Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897. https://doi.org/10.1126/science.1060367
  22. Shi G, Mo C M, Cai W L and Zhang L D 2005 Solid State Commun. 115 253.
  23. Baruah S, Thanachayanont C and Dutta J 2008 Sci. Technol. Adv. Mater. 9 025009. https://doi.org/10.1088/1468-6996/9/2/025009
  24. K.V. Gurav, U. M. Patil, S.W. Shin, S. M. Pawar, J. H. Kim, C. D. Lokhande, J. Alloys Compd. 525, 2012, 1. https://doi.org/10.1016/j.jallcom.2012.01.082
  25. Hu Wang, Juan Xie, Kangping Yan, and Ming Duan, J. Mater. Sci. Technol., 2011, 27(2), 153. https://doi.org/10.1016/S1005-0302(11)60041-8
  26. Ashwini P. Bhirud, Shivaram D. Sathaye, Rupali P. Waichal, Latesh K. Nikam and Bharat B. Kale, Green Chem., 2012, 14, 2790. https://doi.org/10.1039/c2gc35519a
  27. Xiaolong Ren, Pengzhan Ying, Zuobao Yang, Minghui Shang, Huilin Hou and Fengmei Gao. RSC Adv., 2015, 5, 16361. https://doi.org/10.1039/C4RA15421E
  28. Faheem Ahmed, Nishat Arshi, M. S. Anwar, Rehan Danish and Bon Heun Koo, RSC Adv., 2014, 4, 29249. https://doi.org/10.1039/C4RA02470B
  29. Q. Kuang, Z. Y. Jiang, Z. X. Xie, S. C. Lin, Z. W. Lin, S. Y. Xie, R. B. Huang and L. S. Zheng, J. Am. Chem. Soc., 2005, 127, 11777-11784. https://doi.org/10.1021/ja052259t
  30. S. Cho, S. H. Jung and K. H. Lee, J. Phys. Chem. C, 2008, 112, 12769-12776.
  31. J. Shi, H. Hong, Y. Ding, Y. A. Yang, F. Wang, W. B. Cai and X. D. Wang, J. Mater. Chem., 2011, 21, 9000-9008. https://doi.org/10.1039/c1jm10918a
  32. W. W. Lee, J. Yi, S. B. Kim, Y. H. Kim, H. G. Park and W. I. Park, Cryst. Growth Des., 2011, 11, 4927-4932. https://doi.org/10.1021/cg200806a
  33. C. W. Cheng, B. Liu, H. Y. Yang, W. W. Zhou, L. Sun, R. Chen, S. F. Yu, J. X. Zhang, H. Gong, H. D. Sun and H. J. Fan, ACS Nano, 2009, 3, 3069-3076. https://doi.org/10.1021/nn900848x
  34. Du, L. R. Espelt, I. A. Guzei and T. P. Yoon, Chem. Sci., 2011, 2, 2115 RSC. https://doi.org/10.1039/c1sc00357g
  35. Q. J. Xiang, J. G. Yu and M. Jaroniec, Chem. Soc. Rev., 2012, 41, 782 RSC. https://doi.org/10.1039/C1CS15172J
  36. K. F. Zhou, Y. H. Zhu, X. L. Yang, X. Jiang and C. Z. Li, New J. Chem., 2011, 35, 353 RSC. https://doi.org/10.1039/C0NJ00623H
  37. J. T. Zhang, Z. G. Xiong and X. S. Zhao, J. Mater. Chem., 2011, 21, 3634. https://doi.org/10.1039/c0jm03827j
  38. Q. Shen, W. Zhang, Z. P. Hao and L. D. Zou, Chem. Eng. J., 2010, 165, 30.
  39. F. Y. Shen, W. X. Que, Y. L. Liao and X. T. Yin, Ind. Eng. Chem. Res., 2011, 50, 9131. https://doi.org/10.1021/ie2007467
  40. Jamuna K. Vaishnav, Sudhir S. Arbuj, Sunit B. Rane and Dinesh P. Amalnerkar, RSC Adv., 2014, 4, 47637-47642. https://doi.org/10.1039/C4RA08561B
  41. T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142 (1966) 570. https://doi.org/10.1103/PhysRev.142.570
  42. A. Sayari, A. Marzouki, A. Lusson, M. Oueslati, V. Sallet, Thin Solid Films, 2010, 518, 6870-6875. https://doi.org/10.1016/j.tsf.2010.07.031
  43. B. Yang, A. Kumar, P. Feng, R.S. Katiyar, Appl. Phys. Lett. 92 (2008) 233112. https://doi.org/10.1063/1.2943656