DOI QR코드

DOI QR Code

Resource Allocation for Maximizing Energy Efficiency in Energy Harvesting Networks with Channel Estimation Error

채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 에너지 효율성을 최대화 하는 자원할당 방안

  • Lee, Kisong (Department of Information and Telecommunication Engineering, Kunsan National University) ;
  • Hong, Jun-Pyo (Department of Information and Communications Engineering, Pukyong National University)
  • Received : 2015.12.30
  • Accepted : 2016.02.05
  • Published : 2016.03.31

Abstract

Recently, energy harvesting technology is considered as a tool to improve the lifetime of sensor networks by mitigating the battery capacity limitation problem. However, the previous work on energy harvesting has failed to provide practical information since it has assumed an ideal channel knowledge model with perfect channel state information at transmitter (CSIT). This paper proposes an energy efficient resource allocation scheme that takes account of the channel estimation process and the corresponding estimation error. Based on the optimization tools, we provide information on efficient scheduling and power allocation as the functions of channel estimation accuracy, harvested energy, and data rate. The simulation results confirm that the proposed scheme outperforms the conventional energy harvesting networks without considering channel estimation error in terms of energy efficiency. Furthermore, with taking account of channel estimation error, the results provides a new way for allocating resources and scheduling devices.

최근 에너지 하베스팅 기술은 배터리 용량 부족 문제를 해결하여 네트워크 수명을 향상시킬 수 있는 방안으로 관심을 받고 있다. 하지만 기존 연구의 경우 정확한 채널정보를 바탕으로 한 이상적인 환경에서의 하베스팅 기술만을 고려하였다. 본 논문에서는 채널 추정 절차와 이에 따른 채널 추정 오차를 반영한 현실적 에너지 하베스팅 네트워크 환경에서 에너지 효율성을 향상시키기 위한 자원 할당 기법을 제안한다. 제안 기법에서는 최적화 기법을 이용하여 시스템 데이터 전송률, 에너지 획득량, 불완전한 채널 추정 특성 등을 동시에 고려한 스케줄링 및 파워 할당 해를 찾는다. 제안 기법은 에너지 효율성 관점에서 기존의 하베스팅 기법보다 향상된 성능을 보이며, 채널 추정 오차가 반영되었을 때의 에너지 효율적 자원할당 방법에 대한 새로운 정보를 제공한다.

Keywords

References

  1. Study on enhancements for MTC, 3GPP TR Std. TR 22.888, v.0.4.0, 2011.
  2. C. He, B. Sheng, P. Zhu, and X. You, "Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems," IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 153-156, June 2012. https://doi.org/10.1109/WCL.2012.022812.120048
  3. D. W. K. Ng, E. Lo, and R. Schober, "Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas," IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3292-3304, Sept. 2012. https://doi.org/10.1109/TWC.2012.072512.111850
  4. M. Pinuela, P. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Trans. Microwave Theory Tech., vol. 61, no. 7, pp. 2715-2726, July 2013. https://doi.org/10.1109/TMTT.2013.2262687
  5. R. Zhang and C. K. Ho, "MIMO broadcasting for simultaneous wireless information and power transfer," IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989-2001, May 2013. https://doi.org/10.1109/TWC.2013.031813.120224
  6. L. Liu, R. Zhang, and K. Chua, "Wireless information and power transfer: a dynamic power splitting approach," IEEE Trans. Commun., vol. 61, no. 9, pp. 3990-4001, Sept. 2013. https://doi.org/10.1109/TCOMM.2013.071813.130105
  7. R. Berry and R. Gallager, "Communication over fading channels with delay constraints," IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1135-1149, May 2002. https://doi.org/10.1109/18.995554
  8. B. Hassibi and B. M. Hochwald, "How much training is needed in multiple-antenna wireless links?," IEEE. Trans. Inf. Theory, vol. 49, no. 4, pp. 951-963, Apr. 2003. https://doi.org/10.1109/TIT.2003.809594
  9. O. Arnold, F. Richter, G. Fettweis, and O. Blume, "Power consumption modeling of different base station types in heterogeneous cellular networks," in Proc. Future Netw. Mobile Summit, pp. 18, June 2010.

Cited by

  1. 에너지 하베스팅 무선 센서네트워크에서 에너지균형을 위한 라우팅프로토콜 vol.24, pp.5, 2016, https://doi.org/10.6109/jkiice.2020.24.5.666