DOI QR코드

DOI QR Code

HoG 기술자를 이용한 중이염 자동 판별 방법

Middle Ear Disease Automatic Decision Scheme using HoG Descriptor

  • Jung, Na-ra (Graduate School of Electrical Engineering and Computer Science, Chungbuk University) ;
  • Song, Jae-wook (Graduate School of Electrical Engineering and Computer Science, Chungbuk University) ;
  • Choi, Ho-Hyoung (Graduate School of Electrical Engineering and Computer Science, Chungbuk University) ;
  • Kang, Hyun-soo (Graduate School of Electrical Engineering and Computer Science, Chungbuk University)
  • 투고 : 2015.11.11
  • 심사 : 2015.12.28
  • 발행 : 2016.03.31

초록

본 논문은 소아 및 성인의 중이염을 자동 판별할 수 있는 알고리즘을 제안한다. 제안 방법은 중이염 영상과 정상 영상 데이터베이스에서 HoG(histogram of oriented gradient) 기술자를 사용하여 특징을 추출한 다음 SVM(support vector machine) 분류기를 통하여 추출된 특징들을 학습시킨다. 여기서 SVM 입력 벡터의 추출을 위하여 입력영상은 영상크기를 사전에 정의된 일정크기의 영상으로 변환되고 변환된 영상을 16개의 블록과 4개의 셀로 분할하며 9개의 빈을 가진 HoG를 사용한다. 결과적으로 입력 영상에서 576개의 특징을 추출하고 이를 SVM의 학습과 분류에 사용된다. 입력 영상이 학습된 특징들의 모델을 기반으로 SVM 분류기를 통하여 중이염 여부가 판별된다. 실험 결과 제안한 방법은 정확도 90% 이상의 판별 성능을 나타내었다.

This paper presents a decision method of middle ear disease which is developed in children and adults. In the proposed method, features are extracted from the middle ear disease images and normal images using HoG (histogram of oriented gradient) descriptor and the extracted features are learned by SVM (support vector machine) classifier. To obtain an input vector into SVM, an input image is resized to a predefined size and then the resized image is partitioned into 16 blocks each of which is partitioned into 4 sub-blocks (namely cell). Finally, the feature vector with 576 components is given by using HoG with 9 bins and it is used as SVM learning and classification. Input images are classified by SVM classifier based on the model of learning features. Experimental results show that the proposed method yields the precision of over 90% in decision.

키워드

참고문헌

  1. J. Froom , L. Culpepper, et al., "Diagnosis and antibiotic treatment of acute otitis media : Report from International Primary Care Network," BMJ, vol. 300, no. 6724, pp. 582-586, March 1990. https://doi.org/10.1136/bmj.300.6724.582
  2. N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886-893, 2005.
  3. Jiang, J., & Xiong, H. (2012, August). "Fast pedestrian detection based on hog-pca and gentle adaboost," International Conference on Computer Science & Service System (CSSS), pp. 1819-1822, 2012.
  4. Triggs B. "Histograms of oriented gradients for human detection," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886-893, 2005.
  5. D. G. Lowe, "Object recognition from localscale-invariant features," IEEE International Conference on Computer Vision, Kerkyra, Greece, pp. 1150-1157, 1999.
  6. D. G. Lowe, "Distinctive image features from scaleinvariant keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Jan. 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  7. T. Ojala, M. Pietikäinen, D. Harwood, "A Comparative Study of Texture Measures with Classification Based on Feature Distributions," Pattern Recognition, vol. 29, no 1, pp. 51-59, Jan. 1996. https://doi.org/10.1016/0031-3203(95)00067-4
  8. C. Won, "A Study on Facial Expression Recognition using Boosted Local Binary Pattern," Journal of Korea Multimedia Society, vol. 16, no. 12, pp. 1357-1367, Dec. 2013. https://doi.org/10.9717/kmms.2013.16.12.1357
  9. C. Shan, S. Gong, and P.W. McOwan, "Facial Expression Recognition Based on Local Binary Patterns: A Comprehensive Study," Image and Vision Computing, vol. 27, no. 6, pp. 803-816, May 2009. https://doi.org/10.1016/j.imavis.2008.08.005
  10. P. Viola and M. J. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp. 511-518, 2001
  11. R. C. Gonzalez and R. E. Wood, Digital Image Processing, Addison Wesley, 2002
  12. R. Debnath, N. Takahide and H. Takahashi, "A decision based one-against-one method for multi-class support vector machine," Pattern Analysis & Applications, vol. 7, no. 2, pp. 164-175, July 2004. https://doi.org/10.1007/s10044-004-0213-6
  13. Jeong-Hyun Park, Chan-sik Hwang, Keun-sung Bae, "Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions," The Korea Institute of Information and Communication Engineering, vol. 17, no. 5, pp. 1084-1088, May 2013.