DOI QR코드

DOI QR Code

GPS 수신 방위각 제어를 통한 GPS 유도무기 재밍대응 분석

Analysis of Anti-jamming for GPS Guided Missile by GPS Reception Azimuth Control

  • 투고 : 2015.12.08
  • 심사 : 2016.01.12
  • 발행 : 2016.03.31

초록

최근 GPS 시스템이 적과의 교전에서 우수한 정밀도를 달성할 수 있기 때문에 GPS 유도무기들이 육상, 해상 및 공중의 많은 분야에 적용되고 있다. 특히, GPS 유도무기가 발사 되었을 때 현재의 위치를 확인하고 정확한 목표물의 방향을 찾아간다. 그러나 GPS 신호의 미약함으로 인한 취약성이 노출되어 있어 재밍신호가 특정 방향에서 강하게 유입될 경우 GPS 유도무기가 재밍될 수 있다. 따라서 이러한 상황 하에서 재밍대응 기술이 매우 중요하게 대두되고 있다. 본 논문에서는 GPS 유도무기의 재밍대응을 위해 방위각 제어를 이용하였다. 먼저, SLAM-ER, JDAM과 같은 GPS 유도방식의 정밀유도무기에 대하여 조사하였으며, 유도무기가 발사 후 항법도중 재밍이 되지 않도록 제어 가능한 방위각을 실험을 통해 분석하였다. 분석결과 140도 이하의 방위각 제어까지 안정적으로 GPS 유도무기가 정상 작동할 수 있음을 확인하였다.

Recently, because Global Positioning System (GPS) achieves accuracy for engagement of enemy targets, GPS guided weapons have a wide range of applications from land through sea to air. Especially, when GPS guided weapon is then launched, it reads current position and searches a course to the target. As we all know, because GPS signals are weak, these signals can be affected by interference. If jamming signal is strong enough, it can jam the receiver of GPS guided weapon. Therefore, anti-jamming technique is an important thing under these conditions. In this paper, the controlling azimuth angle was used to improve navigation performance of precision guided missile under jamming conditions. First of all, precision missiles by GPS positioning such as SLAM-ER and JDAM were investigated. Also, the azimuth cutoff angle of satellites for usable navigation under jamming signals was analyzed by experimental tests. As a result, we found that azimuth cutoff angle under 140 degree can help ensure continuous GPS reception under the missile guidance.

키워드

참고문헌

  1. J. H. Lee, Future Warfare, Book Korea, 2011.
  2. B. Paul, "GPS Retransmission for Guided Munitions Delivery," GPS Source Inc., White paper, Oct. 2010.
  3. United States Navy. SLAM-ER Missile [Internet]. Available: http://www.navy.mil/navydata.
  4. E. R. Ahmed, Introduction to GPS, 2nd-ed., MA: Artech House, 2006.
  5. P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation System, MA: Artech House, 2008.
  6. C. M. Choi and K. S. Ko, "A Study on Development Direction of Navigation System for NAVWAR," International Journal of Information and Communication Engineering, vol. 19, no. 3, pp. 756-763, Mar. 2015. https://doi.org/10.6109/jkiice.2015.19.3.756
  7. John A. Volpe National Transportation Systems Center, "Vulnerability assessment of the Transportation Infrastructure relying on the Global Positioning System," Final report, Aug. 2001.
  8. C. M. Choi, "An Analysis on Recent Construction Trends of GNSS," in Proceeding of Conference on Information and Communication Engineering, vol. 17, no. 1, pp. 1027-1030, May 2013.
  9. D. M. Akos, "Who's Afraid of the Spoofer? GPS/GNSS Spoofing Detection Via Automatic Gain Contron (AGC)," Journal of the Institute of Navigation, vol. 59, no. 4, pp. 281-290, Winter 2012. https://doi.org/10.1002/navi.19
  10. Defence Agency for Technology and Quality, Defence Science and Technology Survey, DTaQ, 2013.
  11. Y. H. Song, "Research about Development Trend of Precision Guidance Missile," Journal of Defence Science & Technology Information, vol. 27, no.2, pp. 135-143, March-April 2011.
  12. Federation of American Scientists. Joint Direction Attack Munition (JDAM) [Internet]. Available: http://fas.org/man/dod-101/sys/smart/jdam.htm.
  13. C. M. Choi, "Analysis of Anti-jamming for Precision Guidance Missile using GPS," in Proceeding of Conference on Information and Communication Engineering, vol. 19, no. 1, pp. 400, May 2015.