DOI QR코드

DOI QR Code

Synthetic Strategies for High Performance Hydrocarbon Polymer Electrolyte Membranes (PEMs) for Fuel Cells

고성능 탄화수소계 고분자 전해질막의 합성 전략

  • Lee, So Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
  • 이소영 (한국과학기술연구원 연료전지센터) ;
  • 김형준 (한국과학기술연구원 연료전지센터) ;
  • 남상용 (경상대학교나노신소재융합공학과, 공학연구원) ;
  • 박치훈 (경남과학기술대학교 에너지공학과)
  • Received : 2016.02.23
  • Accepted : 2016.02.23
  • Published : 2016.02.29

Abstract

Fuel cells are regarded as a representative energy source expected to replace fossil fuels particularly used in internal combustion engines. One of the most important components is polymer electrolyte membranes (PEMs) acting as a proton conducting barrier to prevent fuel gas crossover. Since water channels act as proton pathways through PEMs, many researchers have been focused on the 'good phase-separation of hydrophilic moiety' which ensures high water retention under low humidity enough to keep the water channel for good proton conduction. Here, we summarized the strategies which have been adopted to synthesize sulfonated PEMs having high proton conductivities even under low humidified conditions, and hope this review will be helpful to design high performance hydrocarbon PEMs.

연료전지는 화석연료, 특히 내연기관을 대체할 수 있는 가장 대표전인 에너지 기술이다. 가장 중요한 핵심 재료 중 하나로서 연료기체의 장벽 역할을 함과 동시에 수소이온전달 역할을 하는 고분자 전해질 막(PEM)이 있다. PEM 내부에서 수화 채널은 수소이온의 전달통로 역할을 하기 때문에, 많은 연구자들은 높은 함수율을 저가습 상태에서도 유지하여 우수한 수소이온 전달 능력을 보유할 수 있는 상분리현상을 통한 친수성 채널 형성에 대하여 초점을 맞추어 왔다. 본 총설에서는 이러한 낮은 가습조건에서도 높은 수소이온전도도를 갖는 술폰화 PEM들의 합성 전략에 대하여 논의 하여보고, 다른 연구자들의 고성능 탄화수소계 PEM의 설계에 도움을 주고자 하였다.

Keywords

References

  1. L. Maugeri, "Understanding oil price behavior through an analysis of a crisis", Rev. Environ. Econ. Policy, 3, 147 (2009). https://doi.org/10.1093/reep/rep007
  2. J. A. Cook, C. R. Ramsay, and P. Fayers, "Using the literature to quantify the learning curve: A case study", Int. J. Technol. Assess. Health Care, 24, 131 (2008). https://doi.org/10.1017/S0266462307080178
  3. R. Wycisk and P. Pintauro, "Fuel cells II", pp.157-183, Springer, Heidelberg (2008).
  4. H. R. Allcock, "Recent developments in polyphosphazene materials science", Curr. Opin. Solid State Mater. Sci., 10, 231 (2006). https://doi.org/10.1016/j.cossms.2007.06.001
  5. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  6. M. Kim, Y. Lee, J. Kim, H. Kim, T. Lim, and I. Moon, "Multiscale modeling and simulation of direct methanol fuel cell", Membr. J., 20, 29 (2010).
  7. K.-D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, A new model for the interpretation of the conductivity of fast proton conductors", Angew. Chem. Int. Edit., 21, 208 (1982).
  8. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
  9. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  10. N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, and M. D. Guiver, "Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s", Angew. Chem. Int. Edit., 50, 9158 (2011). https://doi.org/10.1002/anie.201102057
  11. K. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. Byun, "Fabrication and characterization of partially covalent-crosslinked poly(arylene ether sulfone)s for use in a fuel cell", Membr. J., 18, 274 (2008).
  12. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membr. J., 21, 389 (2011).
  13. C. H. Park, H. S. Kim, and Y. M. Lee, "Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica", Membr. J., 24, 301 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.301
  14. K.-K. Lee, T.-H. Kim, T.-S. Hwang, and Y. T. Hong, "Novel sulfonated poly(arylene ether sulfone) composite membranes containing tetraethyl orthosilicate (TEOS) for PEMFC applications", Membr. J., 20, 278 (2010).
  15. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membr. J., 21, 389 (2011).
  16. D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  17. G. Maier and J. Meier-Haack, "Fuel cells II", pp.1-62, Springer, Heidelberg (2008).
  18. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, "Membranes from sulfonated block copolymers for use in fuel cells", Sep. Purif. Technol., 41, 207 (2005). https://doi.org/10.1016/j.seppur.2004.07.018
  19. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  20. K. D. Kreuer, "Hydrocarbon membranes", Handbook of Fuel Cells, 3, 420 (2003).
  21. J. Roziere and D. J. Jones, "Non-fluorinated polymer materials for proton exchange membrane fuel cells", Annu. Rev. Mater. Res., 33, 503 (2003). https://doi.org/10.1146/annurev.matsci.33.022702.154657
  22. R. Y. M. Huang, P. Shao, C. M. Burns, and X. Feng, "Sulfonation of poly(ether ether ketone)(PEEK): Kinetic study and characterization", J. Appl. Polym. Sci., 82, 2651 (2001). https://doi.org/10.1002/app.2118
  23. B. Yang and A. Manthiram, "Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", Electrochem. Solid-State Lett., 6, A229 (2003). https://doi.org/10.1149/1.1613073
  24. K. Miyatake, T. Yasuda, and M. Watanabe, "Substituents effect on the properties of sulfonated polyimide copolymers", J. Polym. Sci., Part A: Polym. Chem., 46, 4469 (2008). https://doi.org/10.1002/pola.22782
  25. S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: Novel linear aromatic poly(sulfide-ketone)s", Macromolecules, 41, 277 (2007).
  26. S. Matsumura, A. R. Hlil, N. Du, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s with 3,6-ditrityl-9H-carbazole end-groups", J. Polym. Sci., Part A: Polym. Chem., 46, 3860 (2008). https://doi.org/10.1002/pola.22690
  27. M. A. Abu-Saied, A. A. Elzatahry, K. M. El-Khatib, E. A. Hassan, M. M. El-Sabbah, E. Drioli, and M. S. M. Eldin, "Preparation and characterization of novel grafted cellophane-phosphoric acid-doped membranes for proton exchange membrane fuel-cell applications", J. Appl. Polym. Sci., 123, 3710 (2012). https://doi.org/10.1002/app.35048
  28. J. Ding, C. Chuy, and S. Holdcroft, "Solid polymer electrolytes based on ionic graft polymers: Effect of graft chain length on nano-structured, ionic networks", Adv. Funct. Mater., 12, 389 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5<389::AID-ADFM389>3.0.CO;2-5
  29. J. Parvole and P. Jannasch, "Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state", Macromolecules, 41, 3893 (2008). https://doi.org/10.1021/ma800042m
  30. S. Seesukphronrarak and A. Ohira, "Novel highly proton conductive sulfonated poly(p-phenylene) from 2,5-dichloro-4-(phenoxypropyl)benzophenone as proton exchange membranes for fuel cell applications", Chem. Commun., 4744 (2009).
  31. S. Seesukphronrarak, K. Ohira, K. Kidena, N. Takimoto, C. S. Kuroda, and A. Ohira, "Synthesis and properties of sulfonated copoly(p-phenylene)s containing aliphatic alkyl pendant for fuel cell applications", Polymer, 51, 623 (2010). https://doi.org/10.1016/j.polymer.2009.12.023
  32. I. Tonozuka, M. Yoshida, K. Kaneko, Y. Takeoka, and M. Rikukawa, "Considerations of polymerization method and molecular weight for proton-conducting poly(p-phenylene) derivatives", Polymer, 52, 6020 (2011). https://doi.org/10.1016/j.polymer.2011.10.057
  33. D. S. Kim, G. P. Robertson, Y. S. Kim, and M. D. Guiver, "Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes", Macromolecules, 42, 957 (2009). https://doi.org/10.1021/ma802192y
  34. T. B. Norsten, M. D. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, and J. Ding, "Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): Improving PEM properties through rational design", Adv. Funct. Mater., 16, 1814 (2006). https://doi.org/10.1002/adfm.200500763
  35. B. Lafitte, M. Puchner, and P. Jannasch, "Proton conducting polysulfone ionomers carrying sulfoaryloxybenzoyl side chains", Macromol. Rapid Commun., 26, 1464 (2005). https://doi.org/10.1002/marc.200500391
  36. N. Li, D. W. Shin, D. S. Hwang, Y. M. Lee, and M. D. Guiver, "Polymer electrolyte membranes derived from new sulfone monomers with pendent sulfonic acid $groups^{\dagger}$", Macromolecules, 43, 9810 (2010). https://doi.org/10.1021/ma102107a
  37. C. Wang, N. Li, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee, and M. D. Guiver, "Fluorene-based poly(arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes", Macromolecules, 44, 7296 (2011). https://doi.org/10.1021/ma2015968
  38. Y. A. Elabd, E. Napadensky, C. W. Walker, and K. I. Winey, "Transport properties of sulfonated poly(styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities", Macromolecules, 39, 399 (2005).
  39. J.-H. Choi, C. L. Willis, and K. I. Winey, "Structure-property relationship in sulfonated pentablock copolymers", J. Membr. Sci., 394-395, 169 (2012).
  40. M. L. Einsla, Y. S. Kim, M. Hawley, H.-S. Lee, J. E. McGrath, B. Liu, M. D. Guiver, and B. S. Pivovar, "Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity", Chem. Mater., 20, 5636 (2008). https://doi.org/10.1021/cm801198d
  41. H. Ghassemi, J. E. McGrath, and T. A. Zawodzinski Jr, "Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell", Polymer, 47, 4132 (2006). https://doi.org/10.1016/j.polymer.2006.02.038
  42. K. Matsumoto, T. Higashihara, and M. Ueda, "Star-shaped sulfonated block copoly(ether ketone)s as proton exchange membranes", Macromolecules, 41, 7560 (2008). https://doi.org/10.1021/ma8015163
  43. X. Yu, A. Roy, S. Dunn, J. Yang, and J. E. McGrath, "Synthesis and characterization of sulfonated-fluorinated, hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes", Macromol. Symp., 245-246, 439 (2006). https://doi.org/10.1002/masy.200651363
  44. H.-Y. Lee, I. Bae, and K.-H. Min, "Solvent effect on sulfur ylide mediated epoxidation reaction", Bull. Korean Chem. Soc., 28, 2051 (2007). https://doi.org/10.5012/bkcs.2007.28.11.2051
  45. A. Roy, M. A. Hickner, X. Yu, Y. Li, T. E. Glass, and J. E. McGrath, "Influence of chemical composition and sequence length on the transport properties of proton exchange membranes", J. Polym. Sci., Part B: Polym. Phys., 44, 2226 (2006).
  46. H.-S. Lee, A. S. Badami, A. Roy, and J. E. McGrath, "Segmented sulfonated poly(arylene ether sulfone)-b-polyimide copolymers for proton exchange membrane fuel cells. I. Copolymer synthesis and fundamental properties", J. Polym. Sci., Part A: Polym. Chem., 45, 4879 (2007). https://doi.org/10.1002/pola.22238
  47. H.-S. Lee, A. Roy, O. Lane, S. Dunn, and J. E. McGrath, "Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells", Polymer, 49, 715 (2008). https://doi.org/10.1016/j.polymer.2007.12.023
  48. B. Bae, K. Miyatake, and M. Watanabe, "Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications", ACS Appl. Mater. Interfaces, 1, 1279 (2009). https://doi.org/10.1021/am900165w
  49. B. Bae, T. Yoda, K. Miyatake, H. Uchida, and M. Watanabe, "Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells", Angew. Chem. Int. Ed., 49, 317 (2010). https://doi.org/10.1002/anie.200905355
  50. K. Nakabayashi, T. Higashihara, and M. Ueda, "Polymer electrolyte membranes based on cross-linked highly sulfonated multiblock copoly(ether sulfone)s", Macromolecules, 43, 5756 (2010). https://doi.org/10.1021/ma100903v
  51. S. Takamuku and P. Jannasch, "Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains", Macromol. Rapid Commun., 32, 474 (2011). https://doi.org/10.1002/marc.201000683
  52. S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: Novel branched poly(ether-ketone)s", Macromolecules, 41, 281 (2007). https://doi.org/10.1016/j.ijbiomac.2007.03.005
  53. S. Tian, Y. Meng, and A. S. Hay, "Membranes from poly(aryl ether)-based ionomers containing randomly distributed nanoclusters of 6 or 12 sulfonic acid groups", Macromolecules, 42, 1153 (2009). https://doi.org/10.1021/ma802456m
  54. K. Matsumoto, T. Higashihara, and M. Ueda, "Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane", Macromolecules, 42, 1161 (2009). https://doi.org/10.1021/ma802637w
  55. K. Matsumoto, T. Higashihara, and M. Ueda, "Locally sulfonated poly(ether sulfone)s with highly sulfonated units as proton exchange membrane", J. Polym. Sci., Part A: Polym. Chem., 47, 3444 (2009). https://doi.org/10.1002/pola.23403