DOI QR코드

DOI QR Code

Performance Study of Membrane Capacitive Deionization Installed with Sulfonated Poly(ether ether ketone) and Poly(vinyl amine)/poly(vinyl alcohol) Membranes

Sulfonated Poly(ether ether ketone) 및 Poly(vinyl amine)/poly(vinyl alcohol) 혼합막이 장착된 막결합형 축전식 탈염공정의 성능 연구

  • Kim, Ka young (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 김가영 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화공신소재공학과)
  • Received : 2016.02.05
  • Accepted : 2016.02.24
  • Published : 2016.02.29

Abstract

In this study, sulfonated poly(ether ether ketone) (SPEEK) as cation exchange membrane and blended and crosslinked poly(vinyl amine) (PVAm) with poly(vinyl alcohol) (PVA) membrane as anion exchange membrane were used and then the performance experiments of the membrane capacitive deionization (MCDI) installed with both membranes were carried out. The newly prepared anion exchange membrane were characterized through water content, ion exchange capacity and FT-IR. The crosslinking time of 3 h to 5 h indicated that the salt removal was reduced from 81.3, 65.7% to 53.8%. The effect of PVAm contents from 40, 60, to 80% on the salt removal was shown 81.3, 75.2 and 37.7%, respectively. As a result, it was concluded that the crosslinking time and the content of PVAm had an influence on the salt removal efficiency.

본 연구에서는 양이온 교환막으로 Sulfonated poly(ether ether ketone) (SPEEK)를 사용하였고, 음이온 교환막은 poly(vinyl alcohol) (PVA)과 poly(vinyl amine) (PVAm)을 혼합하여 가교시킨 막을 이용하였으며, 이에 대한 막결합형 축전식 탈염 공정(Membrane capacitive deionization, MCDI)의 성능실험을 진행하였다. 음이온 교환막의 함수율, 이온교환용량, FT-IR 측정을 통하여 막의 특성을 알아보았다. 음이온 교환막의 가교 시간이 3 h에서 5 h으로 증가할수록 염 제거 효율은 81.3%에서 65.7, 53.8%로 감소하였다. PVAm의 농도를 40, 60, 80%로 달리하여 실험한 결과 염 제거 효율은 81.3, 75.2, 37.7%로 PVAm이 80% 함량일 때 가장 효율이 떨어졌다. 이는 음이온 교환막의 가교 시간과 PVAm의 농도가 염제거 성능에 영향을 미치는 것으로 사료된다.

Keywords

References

  1. J. S. Koo, N. S. Kwak, and T. S. Hwang, "Synthesis and properties of nonfluoro aminated Poly(vinylbenzyl chloride-co-ethyl methacrylateco-styrene) anion exchange membranes for MCDI process", Polymer(Korea), 36, 564 (2012).
  2. M. W. Ryoo and G. Seo, "Improvement in capacitive deionization function of activated carbon cloth by titania modification", Water Research, 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  3. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
  4. J. A. Lim, N. S. Park, J. S. Park, and J. H. Choi, "Fabrication and characterization of a porous carbon electrode for desalination of brackish water", Desalination, 238, 37 (2009). https://doi.org/10.1016/j.desal.2008.01.033
  5. J. C. Farmer, D. V. Fix, G. V. Mark, R. W. Pekala, and J. F. Poco, "Capacitive Deionization of NaCl and NaNO3 aqueous solutions with carbon aerogel electrodes", J. Electrochem. Soc., 143, 159 (1996). https://doi.org/10.1149/1.1836402
  6. K. W. Kang and T. S. Hwang, "Synthesis and characteristics of partially fluorinated poly(vinylidene fluroide)(PVDF) cation exchange membrane via direct sulfonation", Membr. J., 25, 406 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.406
  7. Y. J. Kim and J. H. Choi, "Desalination of brackish water by capacitive deionization system combined with ion-exchange membrane", Appl. Chem. Eng., 21, 87 (2010).
  8. D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold, and A. Papastamataki, Electrochemical demineralization of water with carbon Electrodes, Research Report, Oklahoma Univ. Research Institute (1966).
  9. D. J. Kim and S. Y. Nam, "Development and application trend of bipolar membrane for electrodialysis", Membr. J., 23, 319 (2013).
  10. J. G. Kim, S. H. Lee, C. H. Ryu, and G. J. Hwang, "Preparation of cation exchange membrane using polybenzimidazole and its characteristic", Membr. J., 22, 265 (2012).
  11. J. H. Yeo and J. H. Choi, "Enhancement of selective removal od nitrate ions from a mixture of anion wsing a carbin electrode coated with ion-exchange resin powder", Appl. Chem. Eng., 24, 49 (2013).
  12. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  13. H. Strathmann, Ion-exchange Membrane Separation Processes, Elsevier, Amsterdam (2004).
  14. K. T. Park, J. H. Chun, D. W. Choi, and S. H. Kim, "A characteriztion study on Nafion/$ZrO_2-TiO_2$composite membranes for PEMFC operation a thigh temperature and low humidity", Trans. Korean Hydrog. New Energy Soc., 22, 60 (2011).
  15. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. Mcgrath, "Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  16. F. Karas, J. Hnat, M. Paidar, J. Schauer, and K. Bouzek, "Determination of the ion-exchange capacity of anion-selective membranes", Int. J. Hydrogen Energy, 39, 5054 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.074
  17. P. M. Biesheuvel, B. van Limpt, and A. van der Wal, "Dynamic adsorption/desorption process model for capacitive deionization", J. Phys. Chem. C., 113, 5636 (2009). https://doi.org/10.1021/jp809644s
  18. L. Deng, T. J. Kim, and M. B. Hagg, "Facilitated transport of $CO_2$ in novel PVAm/PVA blend membrane", J. Membr. Sci., 340, 154 (2009). https://doi.org/10.1016/j.memsci.2009.05.019
  19. B. Smitha, S. Sridhar, and A. A. Khan, "Synthesis and characterization of poly(vinyl alcohol)-based membranes for direct methanol fuel cell", J. Appl. Polym. Sci., 95, 1154 (2005). https://doi.org/10.1002/app.20982
  20. M. Krumova, D. Lopez, R. Benavente, C. Mijangos, and J. M. Perena, "Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol)", Polymer, 41, 9265 (2000). https://doi.org/10.1016/S0032-3861(00)00287-1