• Lee, Sang Hoon (Department of Mathematics, Chungnam National University)
  • Received : 2016.01.12
  • Accepted : 2016.02.05
  • Published : 2016.02.15


We introduce a new approach that allows us to solve, algorithmically, the contractive completion problem. In this article, we provide concrete necessary and sufficient conditions for the existence of contractive completions of Hankel partial contractions of size $4{\times}4$ using a Moore-Penrose inverse of a matrix.


Supported by : CNU


  1. G. Arsene and A. Gheondea, Completing matrix contractions, J. Operator Th. 7 (1982), 179-189.
  2. W. Arveson, Interpolation problems in nest algebra, J. Funct. Anal. 20 (1975), 208-233.
  3. J. Bowers, J. Evers, L. Hogben, S. Shaner, K Sinder, and A. Wangsness, On completion problems for various classes of P-matrices, Linear Algebra Appl. 413 (2006), 342-354.
  4. M. G. Crandall, Norm preserving extensions of linear transformations on Hilbert space, Proc. Amer. Math. Soc. 21 (1969), 335-340.
  5. G. M. Crippen and T. F. Havel, Distance Geometry and Molecular Conformation (Wiley, New York, 1988).
  6. R. Curto, C. Hernandez, and E. de Oteyza, Contractive completions of Hankel partial contractions, J. Math. Anal. Appl. 203 (1996), 303-332.
  7. R. Curto, S. H. Lee, and J. Yoon, Completion of Hankel partial contractions of extremal type, J. Math. Phys. 53, 123526(2012).
  8. R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 712 (2001).
  9. C. Davis, An extremal problem for extensions of a sesquilinear form, Linear Alg. Appl. 13 (1976), 91-102.
  10. C. Davis, W. M. Kahan, and H. F. Weinberger, Norm-preserving dilations and their application to optimal error bounds, SIAM J. Numer. Anal. 19 (1982), 445-469.
  11. C. Foias and A. E. Frazho, Redheffer products and the lifting of contractions on Hilbert space, J. Operator Th. 11 (1984), 193-196.
  12. R. M. Gray, On unbounded Toeplitz matrices and nonstationary time series with an application to information theory, Inf. Control 24 (1974), 181-196.
  13. R. M. Gray and L. D. Davisson, An Introduction to Statistical Signal Processing, Cambridge University Press, London, 2005.
  14. L. Hogben, Matrix completion problems for pairs of related classes of matrices, Numer. Linear Algebra Appl. 373 (2003), 13-19.
  15. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.
  16. I. S. Iohvidov, Hankel and Toeplitz Matrices and Forms: Algebraic Theory, Birkhauser-Verlag, Boston, 1982.
  17. C. R. Johnson and L. Rodman, Completion of partial matrices to contractions, J. Funct. Anal. 69 (1986), 260-267.
  18. C. R. Johnson and L. Rodman, Completion of Toeplitz partial contractions, SIAM J. Matrix Anal. Appl. 9 (1988), 159-167.
  19. I. H. Kim, S. Yoo, and J. Yoon, Completion of Hankel partial contractions of non-extremal type, J. Korean Math. Soc. 52 (2015), 1003-1021.
  20. M. Laurent, A connection between positive semi-definite and Euclidean distance matrix completion problems, Numer. Linear Algebra Appl. 273 (1998), 9-22.
  21. V. Paulsen, Completely bounded maps and dilations, Pitmam Research Notes in Mathematics Series, vol. 146, Longman Sci. Tech., New York, 1986.
  22. S. Parrott, On a quotient norm and Sz.-Nagy-Foias lifting theorem, J. Funct. Anal. 30(1978), 311-328.
  23. S. Power, The distance to upper triangular operators, Math. Proc. Cambridge Phil. Soc. 88 (198), 327-329.
  24. Y. L. Shmul'yan and R. N. Yanovskaya, Blocks of a contractive operator matrix (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 25 (1981), 72-75; (English translation) Soviet Math. (Iz. VUZ) 25 (1981), 82-86.
  25. J. L. Smul'jan, An operator Hellinger integral, Mat. Sb. (N.S.) 49 (1959), 381-430 (in Russian).
  26. H. J. Woerdeman, Strictly contractive and positive completions for block matrices, Linear Alg. and Its Appl. 136 (1990), 63-105.
  27. Wolfram Research, Inc., Mathematica, Version 9, Wolfram Research Inc., Champaign, IL, 2013.