DOI QR코드

DOI QR Code

Enhanced Crystallization Behaviour and Microwave Dielectric Properties of 0.9CaMgSi2O6-0.1MgSiO3 Glass-Ceramics Doped with TiO2

  • Jo, Hyun Jin (Department of Materials Engineering, Kyonggi University) ;
  • Sun, Gui Nam (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Eung Soo (Department of Materials Engineering, Kyonggi University)
  • Received : 2016.02.01
  • Accepted : 2016.02.19
  • Published : 2016.03.31

Abstract

The dependence of the microwave dielectric properties of the glass-ceramic composite $0.9CaMgSi_2O_6-0.1MgSiO_3$ on the crystallization behaviour was investigated as functions of the $TiO_2$ content and heat-treatment temperature. The crystallization behaviour of the specimens was evaluated via a combination of the Rietveld and reference-intensity ratio methods. For specimens with a $TiO_2$ content of up to 1 wt.%, a monoclinic diopside phase was formed, whereas a secondary $TiO_2$ phase was formed with further increases in the $TiO_2$ content. The quality factor (Qf) of the specimens was strongly dependent on the degree of crystallization. The highest Qf value was obtained with a $TiO_2$ content of 0.5 wt.%, which was improved by increasing the heat-treatment temperature. The dielectric constant (K) was affected by the size of the crystallites and the $TiO_2$ content. The temperature coefficient of the resonant frequency (TCF) was nearly constant for all of the specimens, regardless of the $TiO_2$ content or heattreatment temperature.

Keywords

References

  1. E. S. Kim, S. H. Kim, and B. I. Lee, "Low-Temperature Sintering and Microwave Dielectric Properties of $CaWO_4$ Ceramics for LTCC Applications," J. Eur. Ceram. Soc., 26 [10-11] 2101-4 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.064
  2. G. N. Sun and E. S. Kim, "Microwave Dielectric Properties of Diopside-Enstatite Glass-Ceramics," Ferroelectrics, 434 [1] 44-51 (2012). https://doi.org/10.1080/00150193.2012.732373
  3. J. H. Kim, S. J. Hwang, W. K. Sung, and H. S. Kim, "Thermal and Dielectric Properties of Glass-Ceramics Sintered Based on Diopside and Anorthite Composition," J. Electroceram., 23 [2] 209-13 (2009). https://doi.org/10.1007/s10832-007-9395-9
  4. Y. J. Eoh and E. S. Kim, "Effect of Heat-Treatment on the Dielectric Properties of CaMg$Si_2O_6$ Glass-Ceramics with $Cr_2O_3$-$Fe_2O_3$-$TiO_2$," Jpn. J. Appl. Phys., 53 [8S3] 08NB01 (2014). https://doi.org/10.7567/JJAP.53.08NB01
  5. X. Zheng, G. Wen, L. Song, and X. X. Huang, "Efects of $P_2O_5$ and Heat Treatment on Crystallization and Microstructure in Lithium Disilicate Glass Ceramics," Acta Mater., 56 [17] 549-58 (2008). https://doi.org/10.1016/j.actamat.2007.10.024
  6. L. Barbieri, C. Leonelli, T. Manfredini, G. C. Pellacani, C. Siligardi, E. Tondello, and R. Bertoncello, "Solubility, Reactivity and Nucleation Effect of $Cr_2O_3$ in the CaO-MgO-$Al_2O_3$-$SiO_2$ Glassy System," J. Mater. Sci., 29 [23] 6273-80 (1994). https://doi.org/10.1007/BF00354571
  7. J. Williamson, "The Kinetics of Crystal Growth in an Aluminosilicate Glass Containing Small Amounts of Transition-Metal Ions," Mineral. Mag., 37 [291] 759-70 (1970). https://doi.org/10.1180/minmag.1970.037.291.02
  8. T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional Dependence of the Valency State of Cr Ions in Oxide Glasses," J. Non-Cryst. Solids., 220 [2-3] 139-46 (1997). https://doi.org/10.1016/S0022-3093(97)00264-0
  9. A. A. Omar, S. M. Salman, and M. Y. Mahmoud, "Catalyzed Crystallization of Various Glasses Based on Sedimentary Rock Mixtures," Ceramurgia, 15 [2] 57 (1985).
  10. R. G. Duan, K. M. Liang, and S. R. Gu, "Effect of Changing $TiO_2$ Content on Structure and Crystallization of CaO-$Al_2O_3$-$SiO_2$ System Glasses," J. Eur. Ceram. Soc., 18 [12] 1729-35 (1998). https://doi.org/10.1016/S0955-2219(98)00105-8
  11. V. M. F. Marques, D. U. Tulyaganov, G. P. Kothiyal, J. M. F. Ferreira, "The Effect of $TiO_2$ and $P_2O_5$ on Densification Behavior and Properties of Anortite-Diopside Glass-Ceramic Substrates," J. Electroceram., 25 [1] 38-44 (2010). https://doi.org/10.1007/s10832-009-9586-7
  12. K. Yasukawa, Y. Terashi, and A. Nakayama, "Crystallinity Analysis of Glass-Ceramics by the Rietveld Method," J. Am. Ceram. Soc., 81 [11] 2978-82 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02723.x
  13. L. Barbieri, F. Bondioli, I. Lancellotti, C. Leonelli, M. Montorsi, A. M. Ferrari, and P. Miselli, "The Anortite-Diopside System: Structural and Devitrification Study. Part II: Crystallinity Analysis by the Rietveld-RIR Method," J. Am. Ceram. Soc., 88 [11] 3131-36 (2005). https://doi.org/10.1111/j.1551-2916.2005.00578.x
  14. T. Roisnel and J. R. Carvajal, "WinPLOTR: a Windows Tool for Powder Diffraction Patterns Analysis," Mater. Sci. Forum, 378 118-23 (2001).
  15. B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE. Microw. Theory Tech., 8 [4] 402-10 (1960). https://doi.org/10.1109/TMTT.1960.1124749
  16. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, "Precise Measurement Method for Temperature Coefficient of Microwave Dielectric Resonator Material," IEEE Microwave Theory Tech. Symp. Dig., 1 277-80 (1987).
  17. A. Karamanov and M. Pelino, "Induced Crystallization Porosity and Properties of Sintereds Diopside and Wollastonite Glass-Ceramics," J. Eur. Ceram. Soc., 28 [3] 555-62 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.001
  18. S. S. Jiang and K. F. Zhang, "Study on Controlling Thermal Expansion Coefficient of $ZrO_2$-$TiO_2$ Ceramic Die for Superplastic Blow-Forming High Accuracy Ti-6Al-4V Component," Mater. Design., 30 [9] 3904-7 (2009). https://doi.org/10.1016/j.matdes.2009.03.023
  19. R. Chen, Y. Wang, Y. Hu, Z. Hu, and C. Liu, "Modification on Luminescent Properties of $SrAl_2$ $O_4$: $Eu^{2+}$, $Dy^{3+}$ Phosphor by $Yb^{3+}$ Ions Doping," J. Lumin., 128 [7] 1180-84 (2008). https://doi.org/10.1016/j.jlumin.2007.11.094
  20. S. Rajesh, H. Jantunen, M. Letz, and S. Pichler-Willhelm, "Low Temperature Sintering and Dielectric Properties of Alumina-Filled Glass Composites for LTCC Applications," Int. J. Appl. Ceram. Tech., 9 [1] 52-9 (2012). https://doi.org/10.1111/j.1744-7402.2011.02684.x
  21. H. Wang, S. Xu, S. Zhai, D. Deng, and H. Ju, "Effect of $B_2O_3$ Additives on the Sintering and Dielectric Behaviors of CaMg$Si_2O_6$ Ceramics," J. Mater. Sci. Tech., 26 [4] 351-54 (2010). https://doi.org/10.1016/S1005-0302(10)60057-6
  22. B. K. Choi and E. S. Kim, "Effect of Crystallization Behavior on Microwave Dielectric Properties of CaMg$Si_2O_6$ Glass-Ceramics," J. Korean Ceram. Soc., 50 [1] 70-4 (2013). https://doi.org/10.4191/kcers.2013.50.1.70
  23. S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina," J. Am. Ceram. Soc., 80 [7] 1885-88 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03066.x
  24. C. L. Lo, J. G. Duh, and B. S. Chiou, "Low Temperature Sintering and Crystallisation Behaviour of Low Loss Anorthite-Based Glass-Ceramics," J. Mater. Sci., 38 [4] 693-98 (2003). https://doi.org/10.1023/A:1021836326089
  25. A. Templeton, X. Wang, S. J. Penn, and N. M. Alford, "Microwave Dielectric Loss of Titanium Oxide," J. Am. Ceram. Soc., 83 [1] 95-100 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01154.x

Cited by

  1. ) ceramics pp.1546542X, 2019, https://doi.org/10.1111/ijac.13177