DOI QR코드

DOI QR Code

Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors

  • Goh, Yumin (Department of Materials Engineering, Korea Aerospace University) ;
  • Kim, Baek-Hyun (Materials Research Institute, Korea Aerospace University) ;
  • Bae, Hyunjeong (Materials Research Institute, Korea Aerospace University) ;
  • Kwon, Do-Kyun (Department of Materials Engineering, Korea Aerospace University)
  • Received : 2016.03.07
  • Accepted : 2016.03.15
  • Published : 2016.03.31

Abstract

Ferroelectric relaxor ceramics with $BaTiO_3-NaNbO_3-Bi(Mg_{1/2}Ti_{1/2})O_3$ ternary compositions (BT-NN-BMT) have been prepared by sol-gel powder synthesis and consequent bulk ceramic processing. Through the modified chemical approach, fine and single-phase complex perovskite compositions were successfully obtained. Temperature and frequency dependent dielectric properties indicated typical relaxor characteristics of the BT-NN-BMT compositions. The ferroelectric-paraelectric phase transition became diffusive when NN and BMT were added to form BT based solid solutions. BMT additions to the BT-NN solid solutions affected the high temperature dielectric properties, which might be attributable to the compositional inhomogeneity of the complex perovskite and resulting weak dielectric coupling of the Bi-containing polar nanoregions (PNRs). The temperature stability of the dielectric properties was good enough to satisfy the X9R specification. The quasi-linear P-E response and the temperature- stable dielectric properties imply the high potential of this ceramic compound for use in high temperature capacitors.

Keywords

References

  1. R. Dittmer, W. Jo, D. Damjanovic, and J. Rodel, "Lead-Free High-Temperature Dielectrics with Wide Operational Range," J. Appl. Phys., 109 034107 (2011). https://doi.org/10.1063/1.3544481
  2. Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, and G. Wang, "Temperature-Dependent Stability of Energy Storage Properties of $Pb_{0.97}La_{0.02}(Zr_{0.58}Sn_{0.335}Ti_{0.085})O_3$ Antiferroelectric Ceramics for Pulse Power Capacitors," Appl. Phys. Lett., 106 [26] 262901 (2015). https://doi.org/10.1063/1.4923373
  3. H. Lee, J. R. Kim, M. Lanagan, S. Trolier-McKinstry, and C. A. Randall, "High-Energy Density Dielectrics and Capacitors for Elevated Temperatures: Ca(Zr,Ti)$O_3$," J. Am. Ceram. Soc., 96 [4] 1209-13 (2013). https://doi.org/10.1111/jace.12184
  4. D. P. Shay, N. J. Podraza, N. J. Bonnelly, and C. A. Randall, "High Energy Density, High Temperature Capacitors Utilizing Mn-Doped $0.8CaTiO_3$-$0.2CaHfO_3$ Ceramics," J. Am. Ceram. Soc., 95 [4] 1348-55 (2012). https://doi.org/10.1111/j.1551-2916.2011.04962.x
  5. D. Tinberg and S. Trolier-Mckinstry, "Structural and electrical Characterization of $xBiScO_3$-(1-x)$BaTiO_3$," J. Appl. Phys., 101 [2] 4112 (2007).
  6. H. Ogihara, C. Randall, and S. Trolier-Mckinstry, "Weakly, Coupled Relaxor Behavior of $BaTiO_3$-$BiScO_3$ Ceramics," J. Am. Ceram. Soc., 92 [1] 110-18 (2009). https://doi.org/10.1111/j.1551-2916.2008.02798.x
  7. H. Ogihara, C. Randall, and S. Trolier-Mckinstry, "High-Energy Density Capacitors Utilizing $0.7BaTiO_3$-$0.3BiScO_3$ Ceramics," J. Am. Ceram. Soc., 92 [8] 1719-24 (2009). https://doi.org/10.1111/j.1551-2916.2009.03104.x
  8. C.-C. Huang and D. Cann, "Phase Transition and Dielectric Properties in Bi$(Zn_{1/2}Ti_{1/2})O_3$-$BaTiO_3$ Perovskite Solid Solutions," J. Appl. Phys., 104 024117 (2008). https://doi.org/10.1063/1.2960469
  9. Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, "Ferroelectric-Relaxor Behavior of Ba ($Ti_{0.7}Zr_{0.3}$) $O_3$ Ceramics," J. Appl. Phys., 92 2655-57 (2002). https://doi.org/10.1063/1.1495069
  10. A. Chen, Y. Zhi, and J. Zhi, "Impurity-Induced Ferroelectric Relaxor Behavior in Quantum Paraelectric $SrTiO_3$ and Ferroelectric $BaTiO_3$," Phys. Rev. B, 61 [2] 957 (2000). https://doi.org/10.1103/PhysRevB.61.957
  11. J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, "Dielectric Properties of Ba ($Ti_{1-y}Y_y$) $O_3$ Ceramics," J. Appl. Phys., 84 983-86 (1998). https://doi.org/10.1063/1.368164
  12. D. H. Choi, A. Baker, M. Lanagan, S. Trolier-Mckinstry, and C. Randall, "Structural and Dielectric Properties in (1-x)$BaTiO_3$-xBi($Mg_{1/2}Ti_{1/2}$)$O_3$ Ceramics (0.1 ${\leq}$x ${\leq}$0.5) and Potential for High-Voltage Multilayer Capacitors," J. Am. Ceram. Soc., 96 [7] 2197-202 (2013). https://doi.org/10.1111/jace.12312
  13. Q. Zhang, Z. Li, F. Li, and Z. Xu, "Structural and Dielectric Properties of Bi($Mg_{1/2}Ti_{1/2}$)$O_3$-$BaTiO_3$ Lead-Free Ceramics," J. Am. Ceram. Soc., 94 [12] 4335-39 (2011). https://doi.org/10.1111/j.1551-2916.2011.04695.x
  14. D.-K. Kwon and M. H. Lee, "Temperature-Stable High-Energy-Density Capacitors Using Complex Perovskite Thin Films," IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 59 [9] 1894-99 (2012). https://doi.org/10.1109/TUFFC.2012.2403
  15. D.-K. Kwon, Y. Goh, D. Son, B. H. Kim, H. Bae, S. Perini, and M. Lanagan, "Temperature- and Frequency- Dependent Dielectric Properties of Sol-Gel-Derived $BaTiO_3$-$NaNbO_3$ Solid Solutions," J. Electron. Mater., 45 [1] 631-38 (2016). https://doi.org/10.1007/s11664-015-4162-1
  16. C. E. Kim, Y. I. Park, and H. W. Lee, "Preparation of $PbTiO_3$ Fibres Using Triethanolamine-Complexed Alkoxide," J. Mater. Sci. Lett., 16, 96 (1997). https://doi.org/10.1023/A:1018521405929
  17. T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, "Relaxor Ferroelectric $BaTiO_3$-Bi($Mg_{2/3}Nb_{1/3}$)$O_3$ Ceramics for Energy Storage Application," J. Am. Ceram. Soc., 98 [2] 559-66 (2015). https://doi.org/10.1111/jace.13325
  18. A. Zeb and S. J. Milne, "Stability of High Temperature Dielectric Properties for (1-x)$Ba_{0.8}Ca_{0.2}TiO_3$-xBi($Mg_{0.5}Ti_{0.5}$)$O_3$ Ceramics," J. Am. Ceram. Soc., 96 [9] 2887-92 (2013). https://doi.org/10.1111/jace.12412
  19. R. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr. Sect. A: Found. Crystallogr., 32 [5] 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  20. C.-H. Lu and Y.-C. Chen, "Sintering and Decomposition of Ferroelectric Layered Perovskites: Strontium Dismuth Tantalate Ceramics," J. Eur. Ceram. Soc., 19 [16] 2909-15 (1999). https://doi.org/10.1016/S0955-2219(99)00076-X
  21. J. Ravez and A. Simon, "Some Solid State Chemistry Aspects of Lead-Free Relaxor Ferroelectrics," J. Solid State Chem., 162 [2] 260-65 (2001). https://doi.org/10.1006/jssc.2001.9285
  22. A. N. Salak, M. P. Seabra, and V. M. Ferreira, "Evolution from Ferroelectric to Relaxor Behavior in the (1-x)$BaTiO_3$- xLa($Mg_{1/2}Ti_{1/2}$)$O_3$ System," Ferroelectrics, 318 [1] 185-92 (2005). https://doi.org/10.1080/00150190590966360
  23. J. Wang, Y. Liu, K. Lau, R. L. Withers, Z. Li, and Z. Xu, "Dipolar-Glass-like Relaxor Ferroelectric Behavior in the $0.5BaTiO_3$-0.5Bi($Mg_{1/2}Ti_{1/2}$)$O_3$ Electroceramics," Appl. Phys. Lett., 103 [4] 042910 (2013). https://doi.org/10.1063/1.4816741
  24. R. E. Cohen, "Origin of Ferroelectricity in Perovskite Oxides," Nature, 358 [6382] 136-38 (1992). https://doi.org/10.1038/358136a0

Cited by

  1. Influence of A-site nonstoichiometry on the electrical properties of BT-BMT vol.100, pp.3, 2016, https://doi.org/10.1111/jace.14684
  2. Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.02