DOI QR코드

DOI QR Code

도루묵의 체내 변화에 따른 음향산란특성

Acoustical backscattering characteristic depending on the changes in the body of sandfish (Arctoscopus japonicus)

  • 윤은아 (전남대학교 해양기술학부) ;
  • 이경훈 (전남대학교 해양기술학부) ;
  • 황강석 (국립수산과학원 연근해자원과) ;
  • 이형빈 (국립수산과학원 서해수산연구소) ;
  • 한인우 (전남대학교 수산과학과) ;
  • 황두진 (전남대학교 해양기술학부)
  • YOON, Eun-A (Division of Marine Technology, Chonnam National University) ;
  • LEE, Kyounghoon (Division of Marine Technology, Chonnam National University) ;
  • HWANG, Kangseok (Fisheries Resource Research Division, National Institute of Fisheries Science) ;
  • LEE, Hyungbeen (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • HAN, Inwoo (Department of Fisheries Sciences, Chonnam National University) ;
  • HWANG, Doo-Jin (Division of Marine Technology, Chonnam National University)
  • 투고 : 2016.02.12
  • 심사 : 2016.02.23
  • 발행 : 2016.02.28

초록

Changes in target strength (TS) values of sandfish when sandfish was alive and dead were investigated using ex-situ at 120 kHz. TS values measured by tilt angles with -50~+50 degrees showed ranges from -71.0 to -53.3 dB for live sandfish, -63.1~-46.3 dB for thawed sandfish, and -70.0~-50.4 dB after 24 hours from thawed, respectively. It was shown that while TS values were similar between the case of live and the case of after 24 hours from thawed, mean TS values were higher by approximately 5 dB in the case of immediate thawed sandfish. It was also seen that TS values were similar between the case of thawed sandfish and the case of after 21 hours from live. The results showed that TS values of live sandfish were different from those of frozen sandfish. It implies that when estimating TS of frozen fish, the influx of bubbles and changes of body should be considered.

키워드

참고문헌

  1. An HC, Lee KH, Lee SI, Park HH, Bae BS, Yang JH and Kim JB. 2011. Behaviour habitats of sailfin sandfish, Arctoscopus japonicus approaching toward the eastern coastal waters of Korea in the spawning season. J Fish Mar Sci Edu 23, 35-42.
  2. Foote KG. 1980. Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. J Acoust Soc Am 67, 2084-2089. (DOI:10.1121/1.384452)
  3. Henderson MJ and Horne JK. 2007. Comparison of in situ, ex situ, and backscatter model estimates of Pacific hake (Merluccius productus) target strength. Can J Fish Aquat Sci 64, 1781-1794. (DOI:10.1139/f07-134)
  4. Hirose M, Mukai T, Hwang DJ and Iida K. 2005. Target strength measurements on tethered live jellyfish Nemopilema nomurai. Nippon Suisan Gakkaishi 71, 571-577. (DOI:10.2331/suisan.71.571)
  5. Jorgensen R. 2003. The effects of swimbladder size, condition and gonads on the acoustic target strength of mature capelin. ICES J Mar Sci 60, 1056-1062. (DOI:10.1016/s1054-3139(03)00115-2)
  6. Kang D, Sadayasu K, Mukai T, Iida K, Hwang D, Sawada K and Miyashita K. 2004. Target strength estimation of black porgy Acanthopagrus schlegeli using acoustic measurements and a scattering model. Fish Sci 70, 819-828. (DOI:10.1111/j.1444-2906.2004.00875.x)
  7. Kang D, Cho S, Lee C, Myoung JG and Na J. 2009. Ex situ target-strength measurements of Japanese anchovy (Engra ulis japonicus) in the coastal Northwest Pacific. ICES J Mar Sci 66, 1219-1224. (DOI:10.1093/icesjms/fsp042)
  8. Lee DJ. 2015. Changes in the orientation and frequency dependence of target strength due to morphological differences in the fish swim bladder. Korean J Fish Aquat Sci 48, 233-243. (DOI:10.5657/kfas.2015.0233)
  9. Lee HW, Kim JH and Kang YJ. 2006. Sexual maturation and spawning in the sandfish Arctoscopus japonicus in the East Sea of Korea. J Kor Fish Soc 39, 349-356. (DOI:10.5657/kfas.2006.39.4.349)
  10. Lee SI, Yang JH, Yoon SC, Chun YY, Kim JB, Cha HK and Choi YM. 2009. Biomass estimation of sailfin sandfish, Arctoscopus japonicus, in Korean waters. Korean J Fish Aquat Sci 42, 487-493. (DOI:10.5657/kfas.2009.42.5.487)
  11. Lu HJ, Kang M, Huang HH, Lai CC and Wu LJ. 2011. Ex situ and in situ measurements of juvenile yellowfin tuna Thunnus albacares target strength. Fish Sci 77, 903-913. (DOI:10.1007/s12562-011-0401-4)
  12. McClatchie S, Macaulay G, Coombs RF, Grimes P and Hart A. 1999. Target strength of the deep-water fish, orange roughy (Hoplostethus atlanticus) I. Experiments. J Acoust Soc Am 106, 131-142. (DOI:10.1121/1.427042)
  13. Saito I. 2004. Development of fishery resources assessment technology using a scientific echosounder. 2002Annual report of Fisheries Promotion Center, Akita Prefecture Public Relations Division, 4-1-1 sanno, Akita City, Akita 010-8570, Japan, 95-101.
  14. Yang JH, Lee SI, Cha HK, Yoon SC, Chang DS and Chun YY. 2008. Age and growth of the sandfish, Arctoscopus japonicus in the East Sea of Korea. J Kor Soc Fish Tech 44, 312-322. (DOI:10.3796/ksft.2008.44.4.312)
  15. Yang JH, Lee SI, Park KY, Yoon SC, Kim JB, Chun YY, Kim SW and Lee JB. 2012. Migration and distribution changes of the Sandfish, Arctoscopus japonicus in the East Sea. J Kor Soc Fish Tech 48, 401-414. (DOI:10.3796/ksft.2012.48.4.401)
  16. Yasuma H, Takao Y, Sawada K, Miyashita K and Aoki I. 2006. Target strength of the lanternfish, Stenobrachius leucopsarus (family Myctophidae), a fish without an airbladder, measured in the Bering Sea. ICES J Mar Sci 63, 683-692. (DOI:10.1016/j.icesjms.2005.02.016)
  17. Yasuma H, Sawada K, Miyashita K and Aoki I. 2008. Swimbladder morphology and target strength of myctophid fish of the Northwestern Pacific. J Marine Acoust Soc Jap 35, 17-28. (DOI:/10.3135/jmasj.35.17)

피인용 문헌

  1. Behavior analysis of rockfish (Sebastes inermis) depending on the temperature and LED lights vol.52, pp.3, 2016, https://doi.org/10.3796/KSFT.2016.52.3.191