한국동력기계공학회지 제20권 제1호 pp. 24-29 2016년 2월 ISSN 1226-7813(Print) ISSN 2384-1354(Online) Journal of the Korean Society for Power System Engineering http://dx.doi.org/10.9726/kspse.2016.20.1.024 Vol. 20, No. 1, pp. 24-29, February 2016

수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구 Study on the fluid resistance coefficient for control simulation of an underwater vehicle

박상욱*·김민수*·손정현***·백운경** Sang-Wook Park*, Min-Soo Kim*, Jeong-Hyun Sohn*** and Woon-Kyung Baek**

(Received 13 July 2015, Revision received 23 December 2015, Accepted 23 December 2015)

Abstract: Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

Key Words: Autonomous underwater vehicle, Control simulation, Drag force, Resistance coefficient

1. 서 론

해저에는 인류가 최소 수백 년 내지 수천 년 이상을 쓸 수 있는 풍부한 광물자원이 다양한 형 태로 존재한다. 대표적으로 원유를 비롯하여 황·암염·칼륨·석탄 등 비금속자원과, 구리· 아연·납·철·니켈·금·은·수은·형석·베릴 륨·주석·텅스텐 등의 금속자원 그 외에 자원들 이 분포하고 있다. 이러한 해양자원 확보 경쟁에 서 충분한 경쟁력을 확보하기 위해서는 해저를 탐사, 구조물 설치 가능한 해양로봇기술의 안정 적 확보가 필수적이다.

Engineering, Pukyong National University.

바다 탐사를 위한 과학 기술이 발전함에 따라 무인잠수정인 ROV(remotely operated vehicle)와 AUV(autonomous underwater vehicle)가 개발되었 다. 해저에서 사용할 수 있는 무인 잠수정 기술 은 현재 대부분 외국 기술에 의존하고 있다. 미 국, 일본, 영국, 프랑스를 비롯한 해양강국들에서 는 해저 및 심해에서 특수 목적의 탐사 또는 작 업이 가능한 다양한 형태의 무인잠수정을 개발하 였고, 해저탐사와 해양개발 등 다양한 방면에 활 용하고 있다. ROV는 원격으로 조종할 수 있는

† 손정현(교신저자) : 부경대학교 기계설계공학과	* Jeong-Hyun Sohn(corresponding author) : Department of
E-mail : jhsohn@pknu.ac.kr, Tel : 051-629-6166	Mechanical Design Engineering, Pukyong National University.
* 바사으 기미스 · 브겨대하고 대하의 기게서게고하고	E-mail : jhsohn@pknu.ac.kr, Tel : 051-629-6166
ㅋㅎㅋ, 'ㅁ근ㅣ . 1'상데ㅋ프 데ㅋ친 기계 2개 6 4위	*Sang-Wook Park, Min-Soo Kim : Graduate School of
** 백운경 : 무경대학교 기계설계공학과	Mechanical Design Engineering, Pukyong National University.
	**Woon-Kyung Baek : Department of Mechanical Design

무인 잠수정을 말하며 심해 자원 탐사 및 해양 구조물을 설치하는데 사용된다. ROV는 사람이 직접 작업하기 어려운 환경에서 작업 수행이 가 능 하다. 하지만 조종을 위해서 케이블로 연결이 되어야 하므로 운용 범위에 제약이 따른다. 반면 에 AUV는 사람이 직접 조종하지 않고 지정된 경 유점이나 정해진 임무 등 입력되어있는 명령을 수행하는 무인 잠수정으로 주로 해저 탐사나 해 양구조물 감시 등에 사용된다.

Prestero는 6자유도를 가지는 어뢰 형상의 AUV를 개발하고 운동 성능을 분석하였으며¹⁾, Cooney는 정지 상태로 머무를 수 있으며, 운행 중 자세 제어가 가능한 호버링 타입 자율 무인잠 수정(HAUV)을 개발하였고, 제어시뮬레이션을 수 행하여 실험과 비교하였다.²⁾ HAUV는 한 위치에 서 오랫동안 머무르며 관찰할 수 있어 특정지역 이 정밀탐사가 가능하고, 간단한 작업 또한 가능 하여 활용도가 높은 해양 로봇이다. 세계 해양기 술의 동향과 시장성을 고려해 봤을 때 AUV의 국 내 연구 개발이 지속되어야 한다.

본 연구에서는 호버링 타입 자율 무인잠수정을 대상으로, 운용 시 운동 성능에 영향을 미치는 선체특성에 대해서 명확히 정의하고 각 요소를 고려한 동역학 설계를 통해 무인 잠수정의 시스템 을 구성하여 CFD(Computational Fluid Dynamics) 해석을 통한 선체의 저항력과 운동제어 시뮬레이 션의 저항을 비교하였다.

2. 수중 운동체 운동 방정식

2.1 운동 좌표계 및 좌표 변환

6자유도를 가지는 HAUV의 위치와 자세를 나 타내기 위해서 전역좌표계(Global coordinate system)와 물체 고정 좌표계(Body fixed coordinate system)를 정의하여야 한다. 전역좌표계의 원점은 HAUV가 출발하는 해수면 상의 한 지점을 기준 으로 하여, 해수면에 투영되는 AUV의 출발 방향 을 X축, 해수면에 수진인 아래쪽 방향을 Z축, 오 른손 법칙을 사용하여 이미 구해진 두 축으로부 터 결정되는 방향을 Y축으로 정한다. Fig. 1에 HAUV의 운동 좌표계를 나타내었고, 6자유도를 나타내기 위한 변수는 Table 1과 같다.

Fig. 1 Moving coordinate system of HAUV

6자유도 운동에서 x, y, z는 각 운동에서 전역 좌표계에 대한 위치를 나타내고, φ,θ,ψ는 자세 를 나타낸다. u, v, w는 병진방향 속도(Linear velocity)를 나타내고, p, q, r은 회전방향 속도 (angular velocity)를 나타낸다. X, Y, Z는 병진방 향 힘을 나타내고, K, M, N은 회전방향 모멘트를

Table 1 Motion variables of HAUV

Direction	Forces and moments	Position and angle	Linear and angular velocity
Motion in the x-direction (surge)	Х	х	u
Motion in the y-direction (sway)	Y	у	v
Motion in the z-direction (heave)	Z	z	w
Rotate about the x-axis (roll)	K	ϕ	р
Rotate about the y-axis (pitch)	М	θ	q
Rotate about the z-axis (yaw)	Ν	ψ	r

나타낸다. 이를 식 (1)과 (2)로 표현할 수 있다.3)

$$\eta_1 = \begin{bmatrix} x \ y \ z \end{bmatrix}^T, \quad \eta_2 = \begin{bmatrix} \phi \ \theta \ \psi \end{bmatrix}^T \tag{1}$$

$$v_1 = [u \ v \ w]^T, \quad v_2 = [p \ q \ r]^T$$
 (2)

선체 고정 좌표계와 전역 좌표계에는 다음과 같은 관계가 있다.

$$\eta_1 = J_1(\eta_2) v_1 \tag{3}$$

$$\dot{\eta}_2 = J_2(\eta_2)v_2$$
 (4)

 $J_1(\eta_2)$

.

$$= \begin{bmatrix} c\psi c\theta & -s\psi c\phi + c\psi s\theta c\phi & s\psi s\phi + c\psi s\theta c\phi \\ s\psi c\theta & c\psi c\phi + s\psi s\theta s\phi & -c\psi s\phi + s\psi s\theta c\phi \\ -s\theta & c\theta s\phi & c\theta c\phi \end{bmatrix}$$
(5)

$$J_2(\eta_2) = \begin{bmatrix} 1 & \sin\phi \tan\theta & \cos\phi \tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi/\cos\theta & \cos\phi/\cos\theta \end{bmatrix}$$
(6)

기준 좌표계와 물체 고정 좌표계를 설정하게 되면 기준 좌표계에 대한 선체의 물체 고정 좌표 계의 자세는 오일러 각(Euler angle)으로 표시된 다. 식 (5)에서 c는 cos, s는 sin을 의미하며, 기준 좌표계를 X-Y-Z 오일러 각을 이용하여 각 축에 대해 회전시켜 선체 고정 좌표계에 일치시킬 때 얻어지는 각도를 $\psi(yaw angle), \theta(pitch angle),$ $\phi(roll angle)로 정한다.$

2.2 HAUV의 동역학 모델

HAUV는 수중에서 운동하는 운동체이다. 일반 적으로 6자유도를 가지는 수중 운동체는 12개의 상태변수를 사용하여 식 (7)과 같은 비선형 운동 방정식으로 나타낼 수 있다.⁴⁾ 식 (7)에서 우측의 항들은 HAUV에 작용하는 힘과 모멘트를 나타낸 다. 힘과 모멘트로서는 부가질량, 항력, 추진기에 의한 힘과 모멘트를 말한다.

$$\begin{split} m[\dot{u}+qw-rw+\dot{q}z_{G}-\dot{r}y_{G}+(qy_{G}+rz_{G})p \\ &-(q^{2}+r^{2})x_{G}=\sum X \\ m[\dot{v}+ru-pw+\dot{r}x_{G}-\dot{p}z_{G}+(rz_{G}+px_{G})q \\ &-(r^{2}+p^{2})y_{G}=\sum Y \\ m[\dot{w}+pv-qu+\dot{p}y_{G}-\dot{q}x_{G}+(px_{G}+qy_{G})r \\ &-(p^{2}+q^{2})z_{G}=\sum Z \\ I_{x}p+I_{xy}q+I_{xz}r+(I_{z}-I_{y})rq+I_{yz}(q^{2}-r^{2})+ \\ I_{xz}pq-I_{xy}pr+m[y_{G}(\dot{w}+pv-qu)-z_{G}(\dot{v}+ru-pw)] = \sum K \\ I_{yx}p+I_{y}q+I_{yz}r+(I_{x}-I_{z})pr+I_{xz}(r^{2}-p^{2})+ \\ I_{xy}qr-I_{yz}qp+m[z_{G}(\dot{u}+qw-rv)-x_{G}(\dot{w}+pv-qu)] = \sum M \\ I_{xz}p+I_{xy}q+I_{z}r+(I_{y}-I_{z})pq+I_{xy}(p^{2}-q^{2})+ \\ I_{yz}pr-I_{xz}qr+m[x_{G}(\dot{v}+ru-pw)-y_{G}(\dot{u}+wq-rv)] = \sum N \end{split}$$

식 (7)에서 x_G, y_G, z_G 는 HAUV의 물체 고정 좌표계 상의 무게중심 좌표를 나타내고, 위 수식 을 벡터 형식으로 표현하면 식 (8)과 같이 간단화 할 수 있다.

(7)

$$\dot{M_{BB}v} + C_{BB}(v)v = \tau_{BB} \tag{8}$$

2.3 전체 운동 방정식

HAUV의 전체 운동 방정식은 강체 운동방정식 과 수중에서의 부력모델, 부가질량 모델 그리고 Damping 항이 추가되어있다. 이를 벡터 형식으로 보면 식 (9)와 같이 표현 가능하다.

$$\dot{Mv} + C(v)v + D(v)v + g(\eta) + g_{0} = \tau$$
 (9)

$$M = M_{BB} + M_A \tag{10}$$

$$C = C_{RB} + C_A \tag{11}$$

위 식에서 M_{RB} 는 강체 운동체의 질량 행렬을 나타내며, M_A 는 부가질량 행렬을 나타낸다. C_{RB} 는 Coriolis Term의 강체 행렬을 나타내고, C_A 는 마찬가지로 Coriolis Term의 부가질량 행렬을 나 타낸다. D(v)는 Damping 행렬이며, $g(\eta)$ 와 g_o 는 중력과 부력을 나타낸다. τ 는 외력을 나타낸다.

3. 유체 저항력

3.1 부가질량

선체가 유체 속에서 운동하기 위해서는 선체 부피만큼의 유체를 밀어내야 한다. 이때 물체가 가속되고 있다면 선체를 둘러싸고 있는 주변 유 체도 함께 가속된다. 그로 인해 물체는 질량이 증 가된 듯 느껴지는데 이를 부가질량(Added Mass) 이라고 한다. Fig. 2는 선체가 운동할 때 부가질 량에 의해 유체의 운동 에너지가 발생하는 것을 보여준다.

Fig. 2 Kinetic energy of added mass

Imlay는 부가질량을 정의하였고, 행렬의 형태 로 나타내면 식 (12)와 같다.⁵⁾ 실제 36개의 부가 질량 계수 값은 모두 다르지만, 적어도 0보다는 큰 값을 가지게 된다. 만약 운동체가 정지하였을 경우 부가질량의 계수 값은 모두 0이 된다.

$$M_{A} = \begin{bmatrix} X_{\dot{u}} \ X_{\dot{v}} \ X_{\dot{w}} \ X_{\dot{p}} \ X_{\dot{q}} \ X_{\dot{r}} \\ Y_{\dot{u}} \ Y_{\dot{v}} \ Y_{\dot{w}} \ Y_{\dot{p}} \ Y_{\dot{q}} \ Y_{\dot{r}} \\ Z_{\dot{u}} \ Z_{\dot{v}} \ Z_{\dot{w}} \ Z_{\dot{p}} \ Z_{\dot{q}} \ Z_{\dot{r}} \\ K_{\dot{u}} \ K_{\dot{v}} \ K_{\dot{w}} \ K_{\dot{p}} \ K_{\dot{q}} \ K_{\dot{r}} \\ M_{\dot{u}} \ M_{\dot{v}} \ M_{\dot{w}} \ M_{\dot{p}} \ M_{\dot{q}} \ M_{\dot{r}} \\ N_{\dot{u}} \ N_{\dot{v}} \ N_{\dot{w}} \ N_{\dot{p}} \ N_{\dot{q}} \ N_{\dot{r}} \end{bmatrix}$$
(12)

그리고 만약 수중 운동체의 형상이 3면에 대해 대칭을 이룬다면 행렬은 식 (13)과 같이 간단히 나타낼 수 있다.

$$M_{A} = - diag\{X_{i}, Y_{i}, Z_{i}, K_{j}, M_{i}, N_{i}\}$$
(13)

3.2 유체 정역학적 힘

유체 정역학적 힘은 HAUV의 무게와 부력에 의해서 발생하는 힘(F_{HS})과 모멘트(M_{HS})를 말한다. 무게(W)와 부력(B)은 각각 W=mg, B=ρgV로 나타내며, 여기서 g는 중력가속도, ρ는 주변 유체 의 밀도, V는 선체의 부피를 나타낸다. 유체 정 역학적 힘은 식 (14)와 (15)로 표현 가능하다.

$$F_{HS} = W - B \tag{14}$$

$$M_{HS} = r_G \times W - r_B \times B \tag{15}$$

r_G는 물체 고정 좌표계의 중심에서 무게 중심 까지의 거리, r_B는 물체 고정 좌표계의 중심에서 부력 중심까지의 거리를 말한다. Fig. 3은 운동체 의 자세가 변했을 때 부력 중심이 이동하는 것을 보여준다. CG는 무게중심을 나타내며, CB는 부 력중심, CB'은 운동체가 회전하였을 때 변경된 부력중심의 위치를 나타낸다. L은 CG와 CB점 사 이의 거리를 나타내며, θ는 자세 변화 각을 말한 다. 운동체의 자세 변화가 생기면 부력 중심의 이동에 의해서 유체 정역학적 모멘트 즉, 복원력 이 발생한다.

Fig. 3 Difference between center of mass and center of buoyancy

3.3 동유체력 감쇄

물체가 유체 내에서 운동하거나 흐르는 유체 내에 물체가 정지해있을 때 유체에 의해서 운동 에 방해되는 힘을 받는데, 이를 항력이라고 한다.

한국동력기계공학회지 제20권 제1호, 2016년 2월 27

유체에 대한 물체의 상대속도의 반대방향으로 항 력이 작용한다. 항력의 크기는 식 (16)과 같이 나 타낼 수 있다.⁰

$$F_D = \frac{1}{2} \rho C_D A \, u \left| u \right| \tag{16}$$

 C_D 는 항력계수(Drag coefficient)이고, A는 물체 의 단면적, ρ 는 유체 밀도, v는 유체의 속도를 나타낸다. HAUV의 양력을 계산하기 위해서는 형 상에 대한 양력계수 값과 투영면적, 유체의 밀도, 속도를 필요로 한다. 그 관계식은 다음과 같다. C_t (Lift coefficient)은 양력계수 값을 말한다.⁷⁾

$$F_L = \frac{1}{2} \rho C_L A \, u \left| u \right| \tag{17}$$

3.4 CFD 해석

항력계수는 보통 형상에 따른 경험적 수식을 통하여 구할 수 있으나, 복잡한 형상의 항력계수 는 CFD 해석을 통하여 구할 수 있다. 추진기는 HAUV의 정 방향으로 최대 100N의 힘을 낼 수 있고, 이에 따른 최대속도는 1.83m/s, 항력계수 값은 0.205이다. Table 2에 CFD 해석의 조건을 나타내었다.

Table 2 Analysis conditions of CFD

Mesh	No. of nodes 4376		
	No. of element	246219	
Temperature	15(°C)		
Density	997(kg/m^{3})		
Turbulence model	k-epsilon		
Reference pressure	1(atm)		

4. 제어시뮬레이션 저항력 비교

제어시뮬레이션에서 사용되는 항력은 HAUV가 최대 속도일 때의 항력계수를 적용하여 계산한 속도에 따른 항력을 사용하였다. 하지만 항력계 수는 속도에 따라 선형적으로 변한다. Fig. 4는 속도에 따른 항력계수를 CFD해석을 통해 나타낸 그래프이다.

제어시뮬레이션에서는 HAUV의 최대 속도일 때의 항력계수 사용 시 저속, 중속 구간에서의 항 력의 차이가 클 것으로 예상되어 속도 구간별 CFD해석을 통하여 제어시뮬레이션의 항력과 CFD 에서의 항력을 비교해 보았다. Fig. 5에서 0.2m/s 이하인 구간과 1.8m/s 이상인 구간에서는 제어 시뮬레이션에서의 항력과 CFD 해석에서의 항력 이 차이가 없었으나 중간 구간에서의 항력은 큰 차이를 보였다. 최대 오차는 1.2m/s에서 약 15N 의 차이를 보인다.

Fig. 4 The drag coefficient according to the speed

Fig. 5 Comparing drag force between CFD(dotted line) and control simulation(solid line)

5. 결 론

수중 운동체의 정밀한 제어 시뮬레이션을 위해 서 정확한 유체 저항 계수가 필요하다. 간단한 형상의 경우 경험적 수식을 통해 유체 저항 계수 를 구할 수 있지만 복잡한 형상의 경우에는 CFD 해석이 필요하다. 하지만 모든 속도에 대해서 CFD 해석을 수행하기에는 어려움이 있다. 따라 서 본 연구에서는 CFD 해석을 간소화하기 위한 목적으로 속도에 따른 유체 저항 계수와 특정 조 건에서의 유체 저항 계수를 사용했을 때 운동체 가 받는 저항력의 차이를 비교하였다. 최대 속도 에서 항력계수를 사용한 경우와 속도에 따른 항 력계수를 사용하여 구해진 항력은 최대 15N의 차이를 보였다. 경우에 따라 특정 조건에서의 항 력계수를 사용할 수도 있지만, HAUV의 경우 사 용되는 속도 구간이 넓기 때문에 속도에 따른 항 력계수를 사용해야 한다.

후 기

이 논문은 산업 통상자원부 및 한국 산업기술 진흥원의 재원으로 지역성장기반구축사업의 지원 을 받아 수행한 연구임(N0000706).

References

- T. Prestero, 2001, "Verification of six-degree of freedom simulation model for the REMUS autonomous underwater vehicle", M. S. thesis, MIT/WHOI.
- Lauren Alise Cooney, 2009, "Dynamic Response and Maneuvering Strategies of a Hybrid Autonomous Underwater Vehicle in Hovering", M. S. thesis, MIT.
- T. I. Fossen, 2011, "Handbook of Marine Craft Hydrodynamics and Motion Control", Jone Wiley % Sons, New York.
- T. I. Fossen, 1994, "Guidance and control of ocean vehicle", Jone Wiley & Sons, New York.
- Frederick H. Imlay, 1961, "The complete expressions for 'Added mass' of a rigid body moving in an ideal fluid", Hydromechanics laboratory research and development report.
- Sighard F. Hoerner, 1965, "Fluid Dynamic Drag" Hoerner Fluid Dynamics, Bakersfield, CA, 2nd edition.
- Sighard F. Hoerner, 1985. "Fluid Dynamic Lift" Hoerner Fluid Dynamics, Bakersfield, CA, 2nd edition.