DOI QR코드

DOI QR Code

소교량 유송잡물 저감시설의 비교 분석 연구

A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge

  • 김성중 (한국건설기술연구원 하천실험센터) ;
  • 정도준 (국립재난안전연구원) ;
  • 강준구 (한국건설기술연구원 하천실험센터) ;
  • 여홍구 (한국건설기술연구원 하천실험센터) ;
  • 김종태 (한국건설기술연구원 하천실험센터)
  • Kim, Sung-Joong (River Experiment Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung, Do-Joon (National Disaster Management Institute) ;
  • Kang, Joon-Gu (River Experiment Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Yeo, Hong-Koo (River Experiment Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jong-Tae (River Experiment Center, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2016.01.26
  • 심사 : 2016.03.03
  • 발행 : 2016.03.31

초록

홍수 시 하천을 따라 이동하는 유송잡물로 인해 교량을 비롯한 구조물 피해가 급증하고 있다. 따라서 본 연구에서는 유송잡물 저감시설인 수직분리대, 우회말뚝, 스위퍼를 제작하여 실험수로에서 저감시설 유무에 대한 집적실험을 실시하였다. 수직분리대는 교량에 집적되는 유송잡물에 평행 흐름을 발생시켜 이를 통과시키는 저감시설로써 목재를 이용해 제작하였으며, 우회말뚝은 유송잡물의 방향을 우회시키는 방식으로 강파이프를 이용해 제작하였다. 스위퍼는 스크류 형태의 원통형 구조물이 흐름에 의한 자력 회전으로 유송잡물을 통과시키는 방법으로 아크릴을 이용하여 제작하였다. 실험은 유송잡물의 경도 및 투하 방법에 따른 집적 정도를 분석하여 저감시설의 집적률을 비교하는 방법으로 수행하였으며 5회 반복실험을 수행하였다. 실험결과 저감시설의 종류, 유송잡물 형태 등에 따라 차이가 있는 것으로 나타났으며 초기 유송잡물이 집적되는 형태에 따라 크게 좌우되는 경우가 많았다. 교량에 대한 직접적인 저감효과는 우회말뚝, 스위퍼, 수직분리대 순으로 나타났지만 우회말뚝의 경우 말뚝에 직접 집적되는 유송잡물로 인하여 흐름교란, 수위 및 하상변동, 말뚝의 유실 등으로 인한 피해가 발생할 수 있으므로 이를 고려한 설계가 필요하다.

Damage to structures, such as bridge piers, are increasing rapidly due to the debris moving along rivers at the time of flooding. Therefore, the debris fin, debris deflector and debris sweeper, which are debris reduction systems, were produced in this study and an accumulation experiment was carried out on the experimental channel according to the existence of the reduction system. The debris fin is the reduction system that creates parallel flow on debris accumulated on the bridge to pass through the bridge, which was produced using wood. In addition, the debris deflector was produced using steel pipes and it has the type of detouring the direction of debris. The debris sweeper passes the debris using the magnetic force rotation of a screw-shaped cylindrical structure by water flow and it was produced using acrylic material. The experiment was carried out by analyzing the level of accumulation according to the hardness and dropping method of the debris and comparing the accumulation rate of reduction systems, and the experiment was carried out 5 times. According to the experimental results, there was a difference in the accumulation rate according to the type of reduction system and the shape of debris, and it often depended significantly on the initial shape of debris accumulation. The direct debris reduction effect on the bridge was higher in the order of the debris deflector, debris sweeper and debris fin, but in case of the debris deflector, damage, such as stream turbulence, changes in water level and river bed, and the loss of deflector can occur due to debris accumulated directly on the debris deflector. Therefore, it is necessary to design the debris deflector considering these issues.

키워드

참고문헌

  1. Y. H. Cho, S. M. Jeong, K. H. Han, K. S. Shin, “A Study for the Water Rising Effect on Flood Water Level by Debris,” Journal of Korean Society of Hazard Mitigation, Vol. 7, No. 5, pp. 179-186, 2007.
  2. B. G. Kim, Effects of Debris Accumulation on Bridge Pier in Streams under Flood Stage, pp. 70-71, Yonsei University, 2000.
  3. B. W. Melvill, D. M. Dongol, "Bridge Pier Scour with Debris Accumulation, Journal of hydraulic engineering, Vol. 118, No. 9, pp. 1306-1310, 1992. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1306)
  4. C. Gippel, “Environmental Hydraulics of Large Woody Debris in Streams and Rivers,” Journal of Environmental Engineering, Vol. 121, No. 5, pp. 388-395, 1995. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388)
  5. Federal Highway Administration, Debris Control Structures, pp. 5.1-6.26, Federal Highway Administration, U.S.A., 2005.
  6. F. Shields Jr., C. Gippel, “Prediction of Effects of Woody Debris Removal on Flow Resistance,” Journal of hydraulic engineering, Vol. 121, No. 4, pp. 341-354, 1995. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:4(341)
  7. C. A. Braudrick, G. E. Grant, “When Do Logs Move in Rivers?,” Journal of Water Resources Research, Vol. 36, No. 2, pp. 571-583, 2000. DOI: http://dx.doi.org/10.1029/1999wr900290
  8. M. Manga, J. W. Kirchner, "Stress Partitioning in Streams by Large Woody Debris," Journal of Water Resources Research, Vol. 36, No. 8, pp. 2373-2379, 2000. DOI: http://dx.doi.org/10.1029/2000wr900153
  9. N. Wallerstein, C. Alonso, S. Bennett, C. Thorne, “Surface Wave Forces Acting on Submerged Logs,” Journal of hydraulic engineering, Vol. 128, No. 3, pp. 349-353, 2002. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:3(349)
  10. R. B. Manners, M. W. Doyle, M. J. Small, "Structure and Hydraulics of Natural Woody Debris Jams," Journal of Water Resources Research, Vol. 43, W06432, 2007. DOI: http://dx.doi.org/10.1029/2006wr004910
  11. S. M. Jun, J. H. Park, J. H. Lee, K. S. Kwak, "A Hydraulic Experiment about the Effective of Sacrifice piles for Interception of Debris and Reduction of Bridge Scour, Proceeding of the KSCE, pp. 327-330, 2006.
  12. S. J. Kim, J. H. Chung, J. S. Lee, J. T. Kim, “Flood Damage Estimation causing Backwater due to the Blockage by Debris in the Bridges,” Journal of Korean Society of Hazard Mitigation, Vol. 7, No. 4, pp. 59-66, 2007.
  13. G. W. Choi, G. H. Kim, Y. S. Park, “Changes in Water Depth and Velocity by Debris around Piers,” Journal of Korea Water Resources Association, Vol. 36, No. 2, pp. 273-284, 2003. DOI: http://dx.doi.org/10.3741/JKWRA.2003.36.2.273
  14. National Institute for Disaster Prevention, A Study on the Standard Design for Small Bridge Crossing Stream, pp. 53-90, NIDP, 2001.