DOI QR코드

DOI QR Code

Evaluation of press formability of pure titanium sheet

순 티탄늄 판재의 프레스 성형성 평가(제 1보)

  • Received : 2016.01.29
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

Commercially pure titanium (CP Ti) has been actively used in plate heat exchangers due to its light weight, high specific strength, and excellent corrosion resistance. However, compared with automotive steels and aluminum alloys, there has not been much research on the plastic deformation characteristics and press formability of CP Ti sheet. In this study, the mechanical properties of CP Ti sheet are clarified in relation to press formability, including anisotropic properties and the stress-strain relation. The flow curve of the true stress-true strain relation is fitted well by the Kim-Tuan hardening equation rather than the Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet was experimentally evaluated as a criterion for press formability by punch stretching tests. Analytical predictions were also made via Hora's modified maximum force criterion. The predicted FLC with the Kim-Tuan hardening model and an appropriate yield function shows good correlation with the experimental results of the punch stretching test.

본 논문에서는 판형 열교환기 등에 널리 이용되고 있는 순 티타늄 판재의 프레스 성형성을 평가하기 위해 인장실험을 수행하였고 인장실험결과를 가장 잘 피팅할 수 있는 가공경화 모델을 제안하였다. 또한 항복곡면의 도출을 위해 단축변형, 평면변형, 순수전단변형 등 다양한 변형모드 하에서의 인장실험을 실시하였다. 이 제안된 모델을 Hora의 수정된 최대하중조건식에 적용하여 프레스 성형성을 평가하기 위해서 널리 사용되고 있는 성형한계선을 예측하였고 그 결과를 장출성형실험에서 구한 성형한계선과 비교하였다. 도출한 항복곡면을 잘 묘사하기 위한 이방성 항복조건식과 본 연구에서 제안된 가공경화 모델은 순 티타늄 판재의 프레스 성형성의 척도인 성형한계선을 잘 예측함을 알 수 있었다.

Keywords

References

  1. A. Fujita, Y. Itsumi, T. Nakamoto, K. Yamamoto, Pre-coated titanium sheet with excellent press formability, Kobelco Tech. Review, 30, pp. 19-23, 2011.
  2. H. Kuwabara, H. Horiuchi, Material modeling and evaluation of elastic-plastic behaviors of pure titanium subjected to bi-axial stress, Proc. Spring Con. Japan Soc. Plast. Tech., Nagoya, pp. 165-166, 2007.
  3. S. Ishiyama, S. Hanada, O. Izumi, Orientation dependence of twining in commercially pure titanium, The Japan Inst. Metals, 54(9), pp. 976-994, 1990. https://doi.org/10.2320/jinstmet1952.54.9_976
  4. ASTM E2218-02, Standard test method for determining forming limit curves, Annul Book of ASTM Standards, Vol. 03.01, ASTM International, West Conshohocken, PA
  5. F.K. Chen, K.H. Chiu, Stamping formability of pure titanium sheets, J. Mat. Proc. Tech., 170(1-2), pp. 181-186, 2005. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2005.05.004
  6. A. L. Port, F. Toussaint, R. Arrieux, Finite element study and sensitive analysis of the deep-drawing formability of commercially pure titanium, Int. J. Mater. Form., 2(2), pp. 121-129, 2009.
  7. Y.S. Kim, Engineering plasticity and its application, Sigma Press, Korea, pp. 532-574, 2014.
  8. P. Hora, L. Tong, J. Reissner, Prediction methods for ductile sheet metal failure using FE-simulation, Proc. IDDRG'94, Lisboa, pp. 363-375, 1994.
  9. Q. Cao, Q. Zhang, X, Zhang, Anisotropy of mechanical behavior in commercially pure titanium sheets, J. Harbin Inst. Tech., 22(1), pp. 63-67, 2015.
  10. S. Coppieters, D. Yanaga, K. Denys, T. Kuwabara, Identification of post-necking strain hardening behavior of pure titanium sheet, Proc. SEM 2015 Annual Conf. Soc. Exp. Mech. Series, Costa Mesa, USA, pp 59-64. 2015.
  11. M. Ishiki, T. Kutabara, Y. Hayashida, Measurement and analysis of differential work hardening behavior of pure titanium sheet using spline function, Int. J. Form., 4 pp. 193-204, 2011. DOI: http://dx.doi.org/10.1007/s12289-010-1024-5
  12. R.W. Logan, W.F. Hosford, Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide, Int. J. Mech. Sci., 22, pp. 419-430, 1980. DOI: http://dx.doi.org/10.1016/0020-7403(80)90011-9
  13. Y.S. Kim, Formability analysis of pure Ti-sheet, Internal Report of POSCO, 2015.
  14. Y.S. Kim, J.G. Park, Review of formability and forming property for stainless steel, Trans. Mat. Process., 20(3), pp. 193-205, 2011. DOI: http://dx.doi.org/10.5228/KSTP.2011.20.3.193
  15. M. Usuda, Press formability of commercially pure titanium sheets, Nippon Steel Technical Report, 85(1), pp. 24-30, 2002
  16. O. Cazacu, F. Barlar, Generalization of Drucker's yield criterion to orthography, Math. Mech. Solids, 6 pp. 613-630, 2011. DOI: http://dx.doi.org/10.1177/108128650100600603
  17. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets-part 1: theory, Int. J. Plast., 19, pp. 1297-1319, 2003. DOI: http://dx.doi.org/10.1016/S0749-6419(02)00019-0
  18. ISO 12004-2, Metallic material-sheet and stripdetermination of forming limit curves-Part 2: Determination of forming limit curves in the laboratory, 2008.
  19. M. Dilmec, H.S. Halkachi, F. Ozturk, M. Turkoz, Detailed investigation of forming limit determination standards for aluminum alloys, J. Testing Evaluation, 41(1), pp. 10-21, 2013. DOI: http://dx.doi.org/10.1520/JTE104356