On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring

Fatemeh Soheilnia
Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran
e-mail: soheilnia@gmail.com

Abstract. Let R be a commutative semiring. The purpose of this note is to investigate the concept of 2-absorbing (resp., weakly 2-absorbing) primary ideals generalizing of 2-absorbing (resp., weakly 2-absorbing) ideals of semirings. A proper ideal I of R said to be a 2-absorbing (resp., weakly 2-absorbing) primary ideal if whenever $a, b, c \in R$ such that $abc \in I$ (resp., $0 \neq abc \in I$), then either $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Moreover, when I is a Q-ideal and P is a k-ideal of R/I with $I \subseteq P$, it is shown that if P is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R, then P/I is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R/I and it is also proved that if I and P/I are weakly 2-absorbing primary ideals, then P is a weakly 2-absorbing primary ideal of R.

1. Introduction

We assume that all rings are commutative semiring with non-zero identity. The concept of semiring was studied by Vandive [17] in 1934. A none-empty set R with two binary operations addition and multiplication is called semiring if:

1. $(R, +)$ is a commutative monoid with identity element 0.
2. (R, \cdot) is a monoid with identity element $1 \neq 0$.
3. The multiplication both from left and right is distributes over addition.
4. $0.a = a.0 = 0$ for every $a \in R$.

If (R, \cdot) is a commutative semigroup, so R is a commutative semiring. The set \mathbb{Z}_0^+, which denotes the set of all non-negative integer, is a semiring under usual addition and multiplication of non-negative integer but it is not a ring. Semirings have got important structure in rings theory. A non-empty set I is called an ideal if for every $a, b \in I$ and $r \in R$, then $a + b \in I$ and $ra \in I$. The ideal I is called a k-ideal (subtractive ideal) if $a, a + b \in I$, then $b \in I$. By definition, every ideal of semiring

Received January 20, 2015; accepted November 3, 2015.
2010 Mathematics Subject Classification: 16Y60.
Key words and phrases: Semirings, Primary ideals, Weakly primary ideals, 2-Absorbing primary ideals, Weakly 2-absorbing primary ideals.
\(R \) is a \(k \)-ideal of \(R \). An ideal \(I \) of semiring \(R \) is called strongly \(k \)-ideal, whenever \(a + b \in I \) for some \(a, b \in R \), then \(a \in I \) and \(b \in I \). Clearly, every strongly \(k \)-ideal is a \(k \)-ideal. Let \(I \) be an ideal of semiring \(R \). \(I \) is also called a \(Q \)-ideal (partitioning ideal) if there exists a subset \(Q \) of \(R \) such that

1. \(R = \bigcup \{ q + I | q \in Q \} \)
2. If \(q_1, q_2 \in Q \), then \((q_1 + I) \cap (q_2 + I) \neq \emptyset \) if and only if \(q_1 = q_2 \).

Let \(I \) be a \(Q \)-ideal of \(R \) and \(R/I(Q) = \{ q + I | q \in Q \} \). Then \(R/I(Q) \) forms a semiring under the binary operations “\(\oplus \)” and “\(\odot \)” define as follows:

\[
(q_1 + I) \oplus (q_2 + I) = q_3 + I
\]

where \(q_4 \in Q \) is unique such that \(q_1 + q_2 + I \subseteq q_3 + I \).

\[
r \odot (q_1 + I) = q_4 + I
\]

where \(q_4 \in Q \) is unique such that \(rq_1 + I \subseteq q_4 + I \). This semiring \(R/I(Q) \) is said to be the quotient semiring of \(R \) by \(I \). By definition of \(Q \)-ideal, there exists a unique element \(qt \) such that \(0 + I \subseteq qt + I \), so \(qt + I \) is a zero element of \(R/I \). Let \(R \) be a semiring, \(I \) be a \(Q \)-ideal and \(P \) be a \(k \)-ideal of \(R \) with \(I \subseteq P \). Then \(P/I = \{ q + I | q \in P \cap Q \} \) is a \(k \)-ideal of \(R/I \). If \(I \) is a \(Q \)-ideal of \(R \) and \(L \) a \(k \)-ideal of \(R/I \), then \(L = J/I \) where \(J = \{ r \in R : q_1 + I \subseteq L \} \) is a \(k \)-ideal of \(R \), [3]. If \(R \) and \(S \) are semirings, then a function \(\gamma : R \rightarrow S \) is a morphism of semiring if and only if (1) \(\gamma(0_R) = 0_S \); (2) \(\gamma(1_R) = 1_S \) and (3) \(\gamma(r + s) = \gamma(r) + \gamma(s) \) and \(\gamma(rs) = \gamma(r)\gamma(s) \) for all \(r, s \in R \).

A morphism of semirings which is both monomorphism and epimorphism is called isomorphism. In this case, we write \(R \cong S \). If \(\gamma : R \rightarrow S \) is a morphism of semirings and \(\rho \) is a congruence relation on \(S \), then the relation \(\rho' \) on \(R \) defines by \(r\rho' s \) if and only if \(\gamma(r)\rho\gamma(s) \), is a congruence relation on \(R \). In particular, each morphism of semirings \(\gamma : R \rightarrow S \) defines a congruence relation \(\equiv \gamma \) on \(R \) by setting \(r \equiv s \) if and only if \(\gamma(r) = \gamma(s) \). Let \(\gamma : R \rightarrow S \) be a morphism of semirings. If \(J \) is an ideal of \(S \), then \(\gamma^{-1}(J) \) is an ideal of \(R \). Moreover, if \(J \) is \(k \)-ideal, then so is \(\gamma^{-1}(J) \). If \(\gamma \) is an epimorphism and \(I \) is an ideal of \(R \), then \(\gamma(I) \) is an ideal of \(S \), [12, Proposition 9.46]. If \(\gamma : R \rightarrow S \) is a morphism of semirings, then \(\gamma^{-1}(0) \) is an ideal of \(R \). So it said to be the Kernel of \(\gamma \) and denoted by \(ker(\gamma) \). Therefor another congruence relation defined on \(R \) by \(\gamma \) is the relation \(\equiv_{ker(\gamma)} \). It is obviously true that \(r \equiv_{\gamma} s \) whenever \(r \equiv_{ker(\gamma)} s \). Notice that the converse is not necessary true. When the relation \(\equiv_{\gamma} \) and \(\equiv_{ker(\gamma)} \) coincide, then the morphism \(\gamma \) is called steady. A steady morphism \(\gamma : R \rightarrow S \) is monomorphism if and only if \(ker(\gamma) = \{0\} \), [12, Proposition 9.45].

Let \(R \) be a commutative semiring. Recall that an ideal \(I \) of semiring \(R \) is called proper if \(I \subset R \) and a proper ideal \(I \) of \(R \) is called prime (resp., weakly prime) ideal if whenever \(a, b \in R \) such that \(ab \in I \) (resp., \(0 \neq ab \in I \)), then either \(a \in I \) or \(b \in I \). A proper ideal \(I \) of \(R \) is called primary (resp., weakly primary) ideal if whenever \(a, b \in R \) such that \(ab \in I \) (resp., \(0 \neq ab \in I \)), then either \(a \in I \) or \(b^n \in I \).
for some positive integer n. In this case, if I is a primary ideal of R and $P := \sqrt{I}$ is a prime ideal of R, we call that I is a P-primary ideal of R. The radical of an ideal I denoted by \sqrt{I} and defined as the set of all elements $a \in R$ such that $a^n \in I$ for some positive integer n, that is, $\sqrt{I} = \{a \in R | a^n \in I$ for some positive integer $n\}$. It is an ideal of R containing I, and is the intersection of all prime ideals of R containing I. It is easy to show that if an ideal I is k-ideal, then \sqrt{I} is a k-ideal. Furthermore, an element $a \in R$ said to be nilpotent whenever there exists positive integer n such that $a^n = 0$. The set $\{a \in R | a^n = 0$ for some positive integer $n\}$ denoted by $\text{Nil}(R)$.

A. Badawi in [6] introduced a new generalization of prime ideals over a commutative ring. A proper ideal I of a commutative ring R with $I \neq 0$ is said to be a 2-absorbing ideal if whenever $a, b, c \in R$ such that $abc \in I$, then either $ab \in I$ or $ac \in I$ or $bc \in I$. Clearly, every prime ideal is a 2-absorbing ideal. A 2-absorbing (resp., weakly 2-absorbing) ideal of a semiring was introduced by A. Yousefian Darani in [18]. He defined that a proper ideal I of semiring R said to be a 2-absorbing (resp., weakly 2-absorbing) ideal if whenever $a, b, c \in R$ such that $abc \in I$ (resp., $0 \neq abc \in I$), then either $ab \in I$ or $ac \in I$ or $bc \in I$. Recently, A. Badawi, U. Tekir and E. Yetkin in [8] have introduced the concept of 2-absorbing primary ideals over a commutative ring which is a generalization of primary ideals. A proper ideal I of R said to be a 2-absorbing primary ideal if whenever $a, b, c \in R$ with $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

In this paper, we will define the concept of 2-absorbing (resp., weakly 2-absorbing) primary ideal of a semiring. Let R be a semiring and I be an ideal of R. I is a 2-absorbing (resp., weakly 2-absorbing) primary ideal if whenever $a, b, c \in R$ with $abc \in I$ (resp., $0 \neq abc \in I$), then $ab \in I$ or $ac \in I$ or $bc \in I$. We generalize the concept of strongly 2-absorbing primary ideal. Then a proper ideal I of semiring R calls strongly 2-absorbing primary ideal if whenever $I_1 I_2 I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then either $I_1 I_2 \subseteq I$ or $I_2 I_3 \subseteq I$ or $I_1 I_3 \subseteq I$. In fact, among the other things we prove that the radical of a 2-absorbing primary ideal of a semiring is a 2-absorbing ideal (Theorem 2.4). It is shown that if I_1 is a P_1-primary ideal of R and I_2 is a P_2-primary ideal of R, then $I_1 I_2$, $I_1 \cap I_2$ and $P_1 P_2$ are 2-absorbing primary ideals of R (Theorem 2.6). It is shown that if \sqrt{I} is a proper ideal of semiring R such that I is a prime ideal, then I is a 2-absorbing primary ideal of R (Theorem 2.8). It is shown that if I is a Q-ideal and P a 2-absorbing primary k-ideal of R/I with $I \subseteq P$, then P/I is a 2-absorbing primary ideal of R/I (Theorem 2.11). Let $R = R_1 \times R_2$ where R_1, R_2 be commutative semirings. It is shown that I_1 (resp., I_2) is a 2-absorbing primary ideal of R_1 (resp., R_2) if and only if $I_1 \times R_2$ (resp., $R_1 \times I_2$) is a 2-absorbing primary ideal of R and $I = I_1 \times I_2$ is a 2-absorbing primary ideal of R if and only if $I = I_1 \times R_2$ for some 2-absorbing primary ideal I_1 of R_1, or $I = R_1 \times I_2$ for some 2-absorbing primary ideal I_2 of R_2 or $I = I_1 \times I_2$ for some primary ideal I_1 of R_1 and for some primary ideal I_2 of R_2 (Theorems 2.16 and 2.17). It is shown that if I is a proper strongly k-ideal of R, then I is a 2-absorbing primary ideal if and only if $I_1 I_2 I_3 \subseteq I$ for some ideals I_1, I_2 and I_3 of R, then $I_1 I_2 \subseteq I$ or $I_1 I_3 \subseteq \sqrt{I}$ or $I_2 I_3 \subseteq \sqrt{I}$ (Theorem 2.20). In section 3, we
study the concept of weakly 2-absorbing primary ideal of commutative semirings. Indeed it is shown that if \(I \) is a weakly 2-absorbing primary \(k \)-ideal of \(R \), then either \(I \) is 2-absorbing primary or \(I^2 = 0 \) (Theorem 3.6). In the section 4, is got some characterizations in the semirings \((\mathbb{Z}_0^+, \text{gcd}, \text{lcm}) \) and \((\mathbb{Z}_0^+ \cup \{\infty\}, \text{max}, \text{min}) \).

2. 2-Absorbing Primary Ideals in Commutative Semirings

Definition 2.1. Let \(R \) be a semiring and \(I \) be a proper ideal. The ideal \(I \) said to be a 2-absorbing primary ideal if whenever \(a, b, c \in R \) with \(abc \in I \), then either \(ab \in I \) or \(bc \in I \) or \(ac \in I \).

Lemma 2.2. Let \(R \) be a semiring. Then the following statements hold:

1. Every primary ideal is 2-absorbing primary;
2. Every 2-absorbing primary ideal is 2-absorbing primary.

Proposition 2.3. Let \(I \) and \(K \) be ideals of semiring \(R \). If \(I \) is a 2-absorbing primary strongly \(k \)-ideal of \(R \) and \(abK \subseteq I \) for some \(a, b \in R \), then \(ab \in I \) or \(aK \subseteq I \) for some positive integer \(k \).

Proof. Assume that \(ab \notin I \), \(aK \notin I \) and \(bK \notin I \). So there exists \(k_1, k_2 \in K \) such that \(ak_1 \notin I \) and \(bk_2 \notin I \). Since \(abk_1, abk_2 \in I \) and \(I \) is a 2-absorbing primary ideal of \(R \), we conclude that \(bk_1 \in \sqrt{I} \) and \(ak_2 \in \sqrt{I} \). Now since \(ab(k_1 + k_2) \in I \), \(ab \notin I \) and \(I \) is a 2-absorbing primary ideal of \(R \), we have \(a(k_1 + k_2) \in I \) or \(b(k_1 + k_2) \in I \). If \(a(k_1 + k_2) \in I \), since \(I \) is a strongly \(k \)-ideal and \(ak_2 \in \sqrt{I} \), we have \(ak_1 \in \sqrt{I} \), which is a contradiction. If \(b(k_1 + k_2) \in I \), by previous sense and as \(bk_1 \in I \), we conclude that \(bk_2 \in \sqrt{I} \), which is a contradiction. Therefore the result is true.

Theorem 2.4. Let \(R \) be a semiring and \(I \) be an ideal of \(R \). If \(I \) is a 2-absorbing primary ideal of \(R \), then \(\sqrt{I} \) is a 2-absorbing ideal of \(R \).

Proof. Let \(abc \in \sqrt{I} \) for some \(a, b, c \in R \) but \(ac \notin \sqrt{I} \) and \(bc \notin \sqrt{I} \). Then there exists a positive integer \(n \) such that \((abc)^n = a^n b^n c^n \in I \). Since \(I \) is a 2-absorbing primary ideal of \(R \) and \(ac, bc \notin \sqrt{I} \), we have \(a^n b^n \in I \) and so \(ab \in \sqrt{I} \). Hence \(\sqrt{I} \) is a 2-absorbing ideal of \(R \).

Lemma 2.5. Let \(R \) be a commutative semiring. Then the following statements hold:

1. If \(I \) and \(J \) are ideals of \(R \), then \(\sqrt{IJ} = \sqrt{I} \cap \sqrt{J} = \sqrt{I} \cap \sqrt{J} \);
2. If \(P \) is a prime ideal of \(R \), then \(\sqrt{P} = P \). Moreover, \(\sqrt{P^n} = P \) for some positive integer \(n \).

Theorem 2.6. Let \(R \) be a commutative semiring, \(I_1, I_2 \) be ideals of \(R \) and \(P_1, P_2 \) be prime ideals of \(R \). Suppose that \(I_1 \) is a \(P_1 \)-primary ideal of \(R \) and \(I_2 \) is a \(P_2 \)-primary ideal of \(R \). Then the following statements hold:

1. \(I_1 I_2 \) is a 2-absorbing primary ideal of \(R \);
2. \(I_1 \cap I_2 \) is a 2-absorbing primary ideal of \(R \);
3. \(P_1 P_2 \) is a 2-absorbing primary ideal of \(R \).
On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring

Let \(R \) be a commutative semiring and \(P_1, P_2 \) be prime ideals of \(R \). If \(P_1^n \) is a \(P_1 \)-primary ideal and \(P_2^m \) is a \(P_2 \)-primary ideal for every \(n, m \geq 1 \), then \(P_1^n P_2^m \) and \(P_1^n \cap P_2^m \) are 2-absorbing primary ideals of \(R \).

Example 2.10. Let \(I \) be a 2-absorbing primary principal ideal in semiring \(\mathbb{Z}_0^+ +.\. \). Then \(I = \{0\} \) or \(I = < p^n > \) where \(p \) is a prime number and positive integer \(n > 1 \) or \(I = < p_1^n p_2^m > = < d > \) where \(d = p_1^n p_2^m \) is the power factorization of \(d \) and some positive integer \(n, m > 1 \).

Theorem 2.11. Let \(R \) be a commutative semiring, \(I \) be a \(Q \)-ideal and \(P \) be a \(k \)-ideal of \(R/I \) with \(I \subseteq P \). If \(P \) is a 2-absorbing primary ideal of \(R \), then \(P/I \) is a 2-absorbing primary ideal of \(R/I \).
Proof. Let \(P \) be a 2-absorbing primary ideal of \(R \). Assume that \(q_1 + I, q_2 + I, q_3 + I \in R/I \) such that \((q_1 + I) \cap (q_2 + I) \cap (q_3 + I) \in P/I \) where \(q_1, q_2, q_3 \in Q \). So there exists a unique element \(q_4 \in P \cap Q \) such that \(q_1q_2q_3 + I \subseteq q_4 + I \in P/I \), then \(q_1q_2q_3 \in P \). Since \(P \) is a 2-absorbing primary ideal, we have \(q_1q_2q_3 \in \sqrt{P} \) or \(q_1q_3 \in \sqrt{P} \). If \(q_1q_2 \in P \), then \((q_1 + I) \cap (q_2 + I) = q_5 + I \) where \(q_5 \) is the unique element with \(q_1q_2 + I \subseteq q_5 + I \). Hence \(q_5q_3 + r = q_5q_3 + s \) for some \(r, s \in I \), as \(P \) is a \(k \)-ideal and \(q_5 \in P \cap Q \). So \((q_1 + I) \cap (q_2 + I) \in P/I \). Now we assume that \(q_1q_3 \in \sqrt{P} \). Then there exists positive integer \(n \) such that \((q_1q_3)^n = q_1^n \sqrt{q_3^n} \in P \). Since \(q_1q_3 \subseteq q_1q_3 + I \), we can conclude that \((q_1q_3)^n \subseteq (q_1q_3 + I)^n \), thus \((q_1q_3)^n \subseteq (q_1q_3 + I)^n \cap q_1^n q_3^n + I \), and it follows that \((q_1q_3 + I)^n = q_1^n q_3^n + I \in P/I \), that is, \((q_1 + I)^n \cap (q_3 + I)^n \in P/I \). By the similar way, we can show that \((q_2 + I)^n \cap (q_3 + I)^n \in P/I \), hence \(P/I \) is a 2-absorbing primary ideal of \(R/I \).

In the following we get some characterizations of 2-absorbing primary ideals in the morphisms of semirings.

Theorem 2.12. Let \(\gamma : R \to S \) be a morphism of commutative semirings. Then the following statements hold:

1. If \(I \) is a 2-absorbing primary ideal of \(S \), then \(\gamma^{-1}(I) \) is a 2-absorbing primary ideal of \(R \);
2. If \(I \) is a 2-absorbing primary \(k \)-ideal of \(R \) with \(\ker(\gamma) \subseteq I \) and \(\gamma \) is onto steady morphism, then \(\gamma(I) \) is a 2-absorbing primary \(k \)-ideal of \(S \).

Proof. (1) Assume that \(a, b, c \in R \) with \(abc \in \gamma^{-1}(J) \). Then \(\gamma(abc) = \gamma(a)\gamma(b)\gamma(c) \in J \). Since \(J \) is a 2-absorbing primary ideal of \(S \), we have \(\gamma(a)\gamma(b) \in J \) or \(\gamma(b)\gamma(c) \in \sqrt{J} \) or \(\gamma(a)\gamma(c) \in \sqrt{J} \). Hence \(ab \in \gamma^{-1}(J) \) or \(bc \in \gamma^{-1}(\sqrt{J}) \) or \(ac \in \gamma^{-1}(\sqrt{J}) \). Obviously \(a \gamma^{-1}(\sqrt{J}) = \sqrt{\gamma^{-1}(J)} \). Therefore \(\gamma^{-1}(J) \) is a 2-absorbing primary ideal of \(R \).

(2) Assume that \(I \) is a 2-absorbing primary ideal of \(R \) and \(\ker(\gamma) \subseteq I \). Clearly, \(\gamma(I) \) is a \(k \)-ideal of \(S \). Let \(abc \in \gamma(I) \) for some \(a, b, c \in S \). There exists \(x, y, z \in R \) such that \(\gamma(x) = a, \gamma(y) = b \) and \(\gamma(z) = c \). Then \(abc = \gamma(x)\gamma(y)\gamma(z) = \gamma(xyz) \subseteq \gamma(I) \) and so \(\gamma(xyz) = \gamma(r) \) for some \(r \in I \). Since \(\gamma \) is steady, \(xyz + s = r + t \) for some \(s, t \in I \). Hence \(xyz \in I \), as \(I \) is a \(k \)-ideal of \(R \) and \(\ker(\gamma) \subseteq I \). Since \(I \) is 2-absorbing primary, we have \(xyz \in I \) or \(yzx \in \sqrt{I} \) or \(xz \in \sqrt{I} \). Thus \(ab \in \gamma(I) \) or \(bc \in \gamma(\sqrt{I}) \subseteq \sqrt{\gamma(I)} \) or \(ac \in \gamma(\sqrt{I}) \subseteq \sqrt{\gamma(I)} \). Therefore \(\gamma(I) \) is 2-absorbing primary.

Let \(I \) and \(J \) be ideals of \(S \) with \(I \subseteq J \). Then \(J/I = \{a + I \mid a \in J \} \) is an ideal of \(R \). Moreover, if \(J \) is a \(k \)-ideal of \(R \), then \(J/I \) is a \(k \)-ideal of \(R/J \). [5, Lemma 2]. In the following we can use it to show next result.

Corollary 2.13 Let \(R \) be a commutative semiring and \(J \) be an ideal of \(R \). If \(I \) is a 2-absorbing primary \(k \)-ideal of \(R \) with \(J \subseteq I \), then \(I/J \) is a 2-absorbing primary ideal of \(R/J \).

A non-empty subset \(S \) of a semiring \(R \) said to be multiplicatively closed subset whenever \(a, b \in S \) implies that \(ab \in S \). Let \(S \) be a multiplicatively closed subset of
a semiring R. The relation is defined on the set $R \times S$ by $(r, s) \sim (t, y) \iff u_{ry} = u_{ts}$ for some $u \in S$ is an equivalence relation and the equivalence class of $(r, s) \in R \times S$ denoted by r/s. The set of all equivalence classes of $R \times S$ under “~” is denoted by $S^{-1}R$. The addition and multiplication are defined $r/s + t/y = (ry + ts)/sy$ and $(r/s)(t/y) = rt/sy$. The semiring $S^{-1}R$ is called quotient semiring R by S.

Suppose that R is a commutative semiring, S be a multiplicatively closed subset and I be an ideal. The set $S^{-1}I = \{a/b| a \in I, b \in S}\}$ is an ideal of $S^{-1}R$. It is easy to show that if I is a k-ideal, then $S^{-1}I$ is a k-ideal of $S^{-1}R$, (see [12, 14, 15]). Clearly, we get some results that follow by $(r/s) = (t/y) \iff u_{ry} = u_{ts}$ for some $u \in S$ and $r/s = ar/as$ for all $a \in R$ and $r, s \in S$; its zero element is $0/1$ and its multiplicative identity element is $1/1$.

Theorem 2.14. Let R be a commutative semiring and S be a multiplicatively closed subset and I be a k-ideal of R. If I is a 2-absorbing primary ideal of R with $I \cap S = \emptyset$, then $S^{-1}I$ is a 2-absorbing primary ideal of $S^{-1}R$.

Proof. Assume that $a, b, c \in R$ and $s, t, r \in S$ with $(a/s)(b/t)(c/r) \in S^{-1}I$. Then there exists $u \in S$ such that $(ua)bc \in I$. As I is a 2-absorbing primary ideal of R, we conclude that $(ua)b \in I$ or $bc \in \sqrt{I}$ or $(ua)c \in \sqrt{I}$. Firstly, if $(ua)b \in I$, then $(a/s)(b/t) = uab/ust \in S^{-1}I$. If $bc \in \sqrt{I}$, then $(b/t)(c/r) \in S^{-1}(\sqrt{I}) = \sqrt{S^{-1}I}$. Finally, if $(ua)c \in \sqrt{I}$, then $(a/s)(c/r) = uac/urs \in \sqrt{S^{-1}I}$. Hence $S^{-1}I$ is a 2-absorbing primary ideal of $S^{-1}R$. \hfill \square

Proposition 2.15. Let R be a commutative Semiring and P be a 2-absorbing primary ideal of $S^{-1}R$. Then $P \cap R$ is a 2-absorbing primary ideal of R.

Proof. Assume that $a, b, c \in R$ with $abc \in P \cap R$. Then $(a/1)(b/1)(c/1) \in P \cap R$. Since P is a 2-absorbing primary ideal of $S^{-1}R$, we have $(a/1)(b/1) \in P$ or $(b/1)(c/1) \in \sqrt{P}$ or $(a/1)(c/1) \in \sqrt{P}$. Hence $ab \in P \cap R$ or $bc \in \sqrt{P \cap R}$ or $ac \in \sqrt{P \cap R}$. Therefore $P \cap R$ is a 2-absorbing primary ideal of R. \hfill \square

Theorem 2.16. Let $R = R_1 \times R_2$ where R_1, R_2 be commutative semirings. Then the following statements hold:

1. I_1 is a 2-absorbing primary ideal of R_1 if and only if $I_1 \times I_2$ is a 2-absorbing primary ideal of R;
2. I_2 is a 2-absorbing primary ideal of R_2 if and only if $R_1 \times I_2$ is a 2-absorbing primary ideal of R.

Proof. (1) Let I_1 be a 2-absorbing primary ideal of R_1. Assume that $(a, 1)(b, 1)\ (c, 1) = (abc, 1) \in I_1 \times R_2$ such that $a, b, c \in R_1$. Then $abc \in I_1$ and so we conclude that $ab \in I_1$ or $bc \in \sqrt{I_1}$ or $ac \in \sqrt{I_1}$. Hence $(ab, 1) \in I_1 \times R_2$ or $(bc, 1) \in \sqrt{I_1 \times R_2} = \sqrt{I_1} \times R_2$ or $(ac, 1) \in \sqrt{I_1 \times R_2} = \sqrt{I_1} \times R_2$. Therefore $I_1 \times R_2$ is a 2-absorbing primary ideal of R. Conversely, the proof is trivial.

(2) The proof is similar (1). \hfill \square

Theorem 2.17. Let $R = R_1 \times R_2$ where R_1, R_2 be commutative semirings and $I = I_1 \times I_2$ be an ideal of R such that I_1 and I_2 are ideals of R_1 and R_2 respectively. Then the following statements are equivalent:
(1) I is a 2-absorbing primary ideal of R;
(2) $I = I_1 \times I_2$ for some 2-absorbing primary ideal I_1 of R_1 or $I = R_1 \times I_2$ for some 2-absorbing primary ideal I_2 of R_2 or $I = I_1 \times I_2$ for some primary ideal I_1 of R_1 and for some primary ideal I_2 of R_2.

Proof. (1) \Rightarrow (2) Assume that I is a 2-absorbing primary ideal of R. If $I_2 = R_2$, then I is 2-absorbing primary, by Theorem 2.16. If $I_1 = R_1$, then I is 2-absorbing primary, by Theorem 2.16. Suppose that $I_2 \neq R_2$ and $I_1 \neq R_1$. On the other hand $\sqrt{I} = \sqrt{T_1} \times \sqrt{T_2}$. Assume that I_1 is not a primary ideal of R_1. So there exists $a, b \in R_1$ such that $ab \in I_1$ but $a \notin I_1$ and $b \notin \sqrt{T_1}$. Let $x = (a, 1), y = (1, 0)$ and $z = (b, 1)$. Hence $xyz = (a, 1)(1, 0)(b, 1) = (ab, 0) \in I$ but neither $(a, 1)(1, 0) \in I$ nor $(1, 0)(b, 1) \in \sqrt{T}$ nor $(a, 1)(b, 1) \in \sqrt{T}$, which is a contradiction. Then I_1 is a primary ideal of R_1. Now assume that I_2 is not a primary ideal of R_2. Then there are $c, d \in R_2$ such that $cd \in I_2$ but $c \notin I_2$ and $d \notin \sqrt{T_2}$. Let $x = (1, c), y = (0, 1)$ and $z = (1, d)$. Hence $xyz = (1, c)(0, 1)(1, d) = (0, cd) \in I$ but neither $(1, c)(0, 1) \in I$ nor $(0, 1)(1, d) \in \sqrt{T}$ nor $(1, c)(1, d) \in \sqrt{T}$, which is a contradiction. Hence I_2 is a primary ideal of R_2.

(2) \Rightarrow (1) If $I_2 = R_2$ and I_1 is a 2-absorbing primary ideal of R_1, then $I = I_1 \times R_2$ is a 2-absorbing primary ideal of R, by Theorem 2.16. Similarly, if $I_1 = R_1$ and I_2 is a 2-absorbing primary ideal of R_2, then $R_1 \times I_2$ is a 2-absorbing primary ideal of R. Now assume that I_1 and I_2 are primary ideals of R_1 and R_2 respectively. Suppose that $(a_1, b_1)(a_2, b_2)(a_3, b_3) \in I_1 \times I_2$ for some $a_1, a_2, a_3 \in R_1$ and $b_1, b_2, b_3 \in R_2$. Since I_1 and I_2 are primary ideals, we may assume that one of a_i’s is in I_1, say a_1 and one of b_i’s is in I_2, say b_2. Hence $(a_1, b_1)(a_2, b_2) \in I_1 \times I_2$. Consequently, $I_1 \times I_2$ is a 2-absorbing primary ideal of R.

Example 2.18. Let $R = \mathbb{Z}_0^+ \times \mathbb{Z}_0^+$ be a semiring.

(1) We consider $I_1 = 12\mathbb{Z}$ and $I_2 = 6\mathbb{Z}$ which are 2-absorbing primary ideals of \mathbb{Z}_0^+. Then $I = 12\mathbb{Z} \times 6\mathbb{Z}$ is a 2-absorbing primary ideal. However, they are not primary ideals.

(2) Assume that $J = 4\mathbb{Z} \times 6\mathbb{Z}$ is an ideal of R. As we know that $4\mathbb{Z}$ is a primary ideal and $6\mathbb{Z}$ is not a primary ideal. Although it is a 2-absorbing primary ideal. Then it is easy to see that $J = 4\mathbb{Z} \times 6\mathbb{Z}$ is a 2-absorbing primary ideal of R.

Definition 2.19. Let R be a commutative semiring and I be a proper ideal of R. The ideal I is said to be a strongly 2-absorbing primary ideal if whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then either $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{T}$ or $I_1I_3 \subseteq \sqrt{T}$.

Theorem 2.20. Let R be a commutative semiring and I be a proper strongly k-ideal of R. Then the following statements are equivalent:

(1) I is a 2-absorbing primary ideal;
(2) If $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 and I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{T}$ or $I_1I_3 \subseteq \sqrt{T}$.

Proof. (1) \Rightarrow (2) Assume that I is a 2-absorbing primary ideal of R and $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 and I_3 of R. Let $I_1I_2 \notin I$, $I_2I_3 \notin \sqrt{T}$ and $I_1I_3 \notin \sqrt{T}$. Then there exists $i_1 \in I_1$ and $i_2 \in I_2$ such that $i_1i_2I_3 \subseteq I$ and $i_1I_2 \notin \sqrt{T}$ and $i_2I_3 \notin \sqrt{T}$.
Hence $i_1i_2 \subseteq I$, by Proposition 2.3. Since $I_1I_2 \nsubseteq I$, there exists $a \in I_1$ and $b \in I_2$ such that $ab \notin I$. By Proposition 2.3 and since $abI_3 \subseteq I$ and I is 2-absorbing primary, we have $aI_3 \subseteq \sqrt{I}$ or $bI_3 \subseteq \sqrt{I}$. Now we have three cases:

Case I: We assume that $aI_3 \subseteq \sqrt{I}$ but $bI_3 \nsubseteq \sqrt{I}$. Since $i_1bI_3 \subseteq I$ but $bI_3 \nsubseteq \sqrt{I}$ and $i_1I_3 \nsubseteq \sqrt{I}$, we have $i_1b \in I$, by Proposition 2.3. We have $aI_3 \subseteq \sqrt{I}$ but $i_1I_3 \nsubseteq \sqrt{I}$, then $(a + i_1)I_3 \nsubseteq \sqrt{I}$. Since I is a strongly k-ideal. On the other hand, $(a + i)bI_3 \subseteq I$, $bI_3 \nsubseteq \sqrt{I}$ and $(a + i_1)I_3 \nsubseteq \sqrt{I}$, we conclude that $(a + i)b \in I$, by Proposition 2.3. Then $ab \in I$ as I is a strongly k-ideal, which is a contradiction.

Case II: We assume that $aI_3 \nsubseteq \sqrt{I}$ but $bI_3 \subseteq \sqrt{I}$. Hence the complete proof is the same way by Case I.

Case III: We assume that $aI_3 \subseteq \sqrt{I}$ and $bI_3 \subseteq \sqrt{I}$. At the first we consider $bI_3 \subseteq \sqrt{I}$. Since $i_2I_3 \nsubseteq \sqrt{I}$ and I is a strongly k-ideal, we can conclude that $(b + i_2)I_3 \nsubseteq \sqrt{I}$. Since $i_1(b + i_2)I_3 \subseteq I$ but $i_1I_3 \nsubseteq \sqrt{I}$ and $(b + i_2)I_3 \nsubseteq \sqrt{I}$, we have $i_1(b + i_2) \notin I$. Then $i_1b \in I$ and $i_2i_2 \in I$. Since I is a strongly k-ideal. Now we consider $aI_3 \subseteq \sqrt{I}$ but $i_1I_3 \nsubseteq \sqrt{I}$, so $(a + i_1)I_3 \nsubseteq \sqrt{I}$. As $(a + i_1)i_2I_3 \subseteq I$ but $(a + i_1)I_3 \nsubseteq \sqrt{I}$ and $i_2I_3 \nsubseteq \sqrt{I}$, we conclude that $(a + i_1)i_2 \notin I$. Then $ai_2 \in I$ and $i_2i_2 \in I$. Now as $(a + i_1)(b + i_2)I_3 \subseteq I$ but $(a + i_1)I_3 \nsubseteq \sqrt{I}$ and $(b + i_2)I_3 \nsubseteq \sqrt{I}$, we can conclude that $(a + i_1)(b + i_2) = ab + c \in I$ and so $ab \in I$, which is a contradiction. Therefore $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_1I_3 \subseteq \sqrt{I}$.

(2) \Rightarrow (1) The proof is straightforward.

One of the main sense, that is generalized for semirings, is the concept of primary decomposition. Let R be a commutative semiring and I be a proper ideal of R. A primary decomposition of I is an epithet for I as an intersection of finitely many primary ideals of R. On the other words a primary decomposition of I is $I = I_1 \cap \cdots \cap I_r$ where each I_i is P_i-primary ideal in semiring R. It is easy to show that if R is a Noetherian semiring, then every proper k-ideal is a finite intersection of primary k-ideals. Since every primary ideal of a semiring R is a 2-absorbing primary ideal, we claim that every proper ideal of R has a 2-absorbing primary decomposition. In the next, we define the concept of P-2-absorbing primary ideal that is generalization of the concept of P-primary ideal in semirings.

Definition 2.21. Let R be a semiring and I be a 2-absorbing primary ideal of R. If $\sqrt{I} = P$ is a 2-absorbing ideal of R, then I is called P-2-absorbing primary ideal of R.

The following theorem gives a characterization of P-2-absorbing primary ideals of semiring R.

Theorem 2.22. Let I_1, \cdots, I_r be P-2-absorbing primary ideals of semiring R where P is a 2-absorbing ideal of R. Then $I = \bigcap_{i=1}^{r} I_i$ is a P-2-absorbing primary ideal of R.

Proof. Assume that $abc \in I$ for some $a, b, c \in R$ and $ab \notin I$. Then $ab \notin I_i$ for some $1 \leq i \leq n$. Since every I_i is P-2-absorbing primary ideal, we can conclude that $ac \in \sqrt{I_i} = P$ or $bc \in \sqrt{I_i} = P$. Therefore I is a P-2-absorbing primary ideal of
3. Weakly 2-Absorbing Primary Ideals in Commutative Semirings

In this section we define the concept of weakly 2-absorbing primary ideal of a commutative semiring and generalize some basic results in semirings.

Definition 3.1. Let R be a semiring and I be a proper ideal. The ideal I is said to be a **weakly 2-absorbing primary ideal** if whenever $a,b,c \in R$ with $0 \neq abc \in I$, then either $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$.

Lemma 3.2. Let R be a semiring. Then the following statements hold:
1. Every weakly primary ideal is weakly 2-absorbing primary;
2. Every 2-absorbing primary ideal is weakly 2-absorbing primary.

Theorem 3.3. Let R be a commutative semiring, I be a Q-ideal and P be a k-ideal of R/I with $I \subseteq P$. Then the following statements hold:
1. If P is a weakly 2-absorbing primary ideal of R, then P/I is a weakly 2-absorbing primary ideal of R/I;
2. If I and P/I are weakly 2-absorbing primary ideals, then P is a weakly 2-absorbing primary ideal of R.

Proof. (1) Assume that $q_1 + I, q_2 + I, q_3 + I \in R/I$ such that $0 \neq (q_1 + I) \circ (q_2 + I) \circ (q_3 + I) \in P/I$ where $q_1, q_2, q_3 \in Q$ and $0 \neq q_1 q_2 q_3 \in I$. Now this part proves completely similar Theorem 2.11.

(2) Assume that I and P/I are weakly 2-absorbing primary ideals. Let $0 \neq abc \in P$ for some $a,b,c \in R$. If $abc \in I$, then $ab \in I \subseteq P$ or $(bc)^n \in I \subseteq P$ or $(ac)^n \in I \subseteq P$. Since I is a weakly 2-absorbing primary ideal. So we can assume that $abc \notin I$. Then there exists $q_1, q_2, q_3 \in Q$ such that $a \in q_1 + I$, $b \in q_2 + I$ and $c \in q_3 + I$. Hence $a = q_1 + e$, $b = q_2 + f$ and $c = q_3 + g$ for some $e, f, g \in I$. Since $abc = (q_1 + e)(q_2 + f)(q_3 + g) = q_1 q_2 q_3 + q_1 q_3 f + q_2 q_3 e + q_1 e f + q_2 q_3 g + q_3 q_2 g + q_2 e g + q_3 f g$ and P is a k-ideal, we have $q_1 q_2 q_3 \in P$. Assume that q is the unique element in Q such that $(q_1 + I) \circ (q_2 + I) \circ (q_3 + I) = q + I$ where $q_1 q_2 q_3 + I \subseteq q + I$. Then $q_1 q_2 q_3 + i = q + h$ for some $i, h \in I$ and so $q \in P \cap Q$ and $q + I \in P/I$. Now suppose that $q + I$ is the unique element such that $q' + I$ is the zero element in R/I. If $(q_1 + I) \circ (q_2 + I) \circ (q_3 + I) = q' + I$, then $q_1 q_2 q_3 + j = q' + l$ for some $j, l \in I$. As I is a Q-ideal of R, it is a k-ideal by [16, Corollary 2]. Thus $q_1 q_2 q_3 \in I$ and so $abc \in I$, which is a contradiction. Hence $(q_1 + I) \circ (q_2 + I) \circ (q_3 + I) \in P/I$. Since P/I is a weakly 2-absorbing primary ideal, we conclude $q_1 q_2 + I \in P/I$ or $(q_2 q_3 + I)^n \in P/I$ or $(q_1 q_3 + I)^n \in P/I$ for some n. If $q_1 q_2 + I \in P/I$, then $ab = q_1 q_2 + ef \in P$. If $(q_1 q_3 + I)^n = q_1 q_3 q_2 + I \in P/I$, then it follows that $(ac)^n \in P$. In a similar way, we can show that $(bc)^n \in P$. Then it follows that either $q_1 q_2 \in P$ or $q_2 q_3 \in \sqrt{P}$ or $q_1 q_3 \in \sqrt{P}$. Hence $ab \in P$ or $bc \in \sqrt{P}$ or $ac \in \sqrt{P}$. Therefore P is a weakly 2-absorbing primary ideal of semiring R. □

Example 3.4. Let $R = Z_{12}$ be a commutative semiring and $I = \{0\}$ be an ideal of R. Then I is a weakly 2-absorbing primary ideal of R, by definition. Now we
consider $2.2.3 \in I$ but neither $2.2 \in I$ nor $2.3 \in \sqrt{I}$. So I is not a 2-absorbing primary ideal. It is noticeable that every 2-absorbing primary ideal is a weakly 2-absorbing ideal by Lemma 3.2, but a weakly 2-absorbing primary ideal need not to be a 2-absorbing primary ideal. In the following result we show that provided which conditions it can be possible.

Lemma 3.5. Let R be a commutative semiring and I be a k-ideal of R. If $a \in I$ and $a + b \in \sqrt{I}$ for some $a, b \in R$, then $b \in \sqrt{I}$.

Theorem 3.6. Let R be a commutative semiring and I be an ideal of R. If I is a weakly 2-absorbing primary k-ideal of R, then either I is 2-absorbing primary or $I^3 = 0$.

Proof. Assume that $I^3 \neq 0$. We show that I is a 2-absorbing primary ideal of R. Let $a, b, c \in R$ such that $abc \in I$. If $abc \neq 0$, then $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$, that is, I is a 2-absorbing primary ideal of R. So we suppose that $abc = 0$. At the first, we assume that $abI \neq 0$ and say $abI = 0$ for some $r_0 \in I$. Then $0 \neq abI = ab(c + r_0) \in I$. As I is weakly 2-absorbing primary, we get that $ab \in I$ or $b(c + r_0) \in \sqrt{I}$ or $a(c + r_0) \in \sqrt{I}$. Then $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$, by Lemma 3.5. So we can suppose that $abI = 0$. Likewise we can assume that $acI = 0$ and $bcI = 0$. Since $I^3 \neq 0$, there exists $a_0, b_0, c_0 \in I$ with $a_0b_0c_0 \neq 0$. If $a_0b_0c_0 \neq 0$, then $a(b + b_0)(c + c_0) \in I$, so it implies that $a(b + b_0) \in I$ or $(b + b_0)(c + c_0) \in \sqrt{I}$ or $(c + c_0) \in \sqrt{I}$. Hence $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$, by Lemma 3.5. So we can also assume that $a_0b_0c_0 = 0$. Likewise we can consider $a_0bc_0 = 0$ and $a_0b_0c = 0$. Now we can conclude that $0 \neq a_0b_0c_0 = (a + a_0)(b + b_0)(c + c_0) \in I$, so we get $(a + a_0)(b + b_0) \in I$ or $(b + b_0)(c + c_0) \in \sqrt{I}$ or $(a + a_0)(c + c_0) \in \sqrt{I}$. By Lemma 3.5, $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Hence I is a 2-absorbing primary ideal of R. □

We can now use Theorem 3.6 to characterize weakly 2-absorbing primary ideals in semirings.

Corollary 3.7. Let R be a commutative semiring and I be a weakly 2-absorbing primary k-ideal of R. If I is not a 2-absorbing primary ideal, then $\sqrt{I} = \sqrt{0}$.

Proof. Clearly $\sqrt{0} \subseteq \sqrt{I}$. By Theorem 3.6, $I^3 = 0$. So we get $I \subseteq \sqrt{0}$, then $\sqrt{I} \subseteq \sqrt{0}$. Hence $\sqrt{I} = \sqrt{0}$. □

Corollary 3.8. Let R be a commutative semiring. If I is a weakly 2-absorbing primary k-ideal of R that is not 2-absorbing primary ideal, then I is nilpotent.

Proposition 3.9. Let R be a commutative Semiring and P be a weakly 2-absorbing primary ideal of $S^{-1}R$. Then $P \cap R$ is a weakly 2-absorbing primary ideal of R.

Proof. This following from Proposition 2.15. □

Theorem 3.10. Let $R = R_1 \times R_2$ where R_1, R_2 be commutative semirings and $I = I_1 \times I_2$ be an ideal of R such that I_1 and I_2 are ideals of R_1 and R_2 respectively. If I is a weakly 2-absorbing primary ideal of R, then either $I = 0$ or I is 2-absorbing primary.
4. Properties of 2-Absorbing Primary Ideals in Semiring \mathbb{Z}_0^+

In this section we give characterizations of 2-absorbing primary ideal in semiring \mathbb{Z}_0^+. In the following theorems we get that some results in semiring $(\mathbb{Z}_0^+, \gcd, \text{lcm})$ where $a \otimes b = \gcd\{a, b\}$ and $a \otimes b = \text{lcm}\{a, b\}$ for $a, b \in \mathbb{N}$. $a \otimes 0 = a$ and $a \otimes 0 = 0$ for all $a \in \mathbb{Z}_0^+$.

Theorem 4.1. A non-zero ideal I of semiring $(\mathbb{Z}_0^+, \gcd, \text{lcm})$ is 2-absorbing primary ideal if and only if I is a 2-absorbing ideal.

Proof. Assume that $I = I_1 \times I_2$ is a weakly 2-absorbing primary and $I \neq 0$. We show that I is 2-absorbing primary. Let $(a, b) \in I = I_1 \times I_2$ such that $(a, b) \neq (0, 0)$. Then (0, 0) $\neq (a, 1)(1, 1)(1, b) \in I$. So either $(a, 1)(1, 1) \in I$ or $(1, 1)(1, b) \in \sqrt{I}$ or $(a, 1)(1, b) \in \sqrt{I}$. If $(a, 1) \in I$, then $(a, 1) \in I_1 \times R_2$. We show that I_1 is a 2-absorbing primary ideal of R_1. Let $x, y, z \in R_1$ such that $xyz \in I_1$. Then (0, 0) $\neq (x, 1)(y, 1)(z, 1) \in I$. Since I is weakly 2-absorbing primary, we have $(x, 1)(y, 1) \in I_1 \times R_2$ or $(y, 1)(z, 1) \in \sqrt{I_1 \times R_2} = \sqrt{I_1 \times R_2} = \sqrt{I_1 \times R_2}$ and so $xyz \in I_1$ or $yz \in \sqrt{I_1}$ or $xz \in \sqrt{I_1}$. Then $I_1 \times R_2$ is a 2-absorbing primary ideal of R_1, by Theorem 2.16. If $(1, b) \in \sqrt{I_1 \times I_2}$, then $(1, b^n) \in I_1 \times I_2$ for some positive integer n and so $I = R_1 \times I_2$. By similar way, $R_1 \times I_2$ is a 2-absorbing primary ideal. Now if $(a, 1)(1, b) \in \sqrt{I_1 \times I_2}$, we have $(a^n, b^n) \in I_1 \times I_2$ for some positive integer n. We show that I_1 and I_2 are primary ideals. Suppose that $R_2 \neq I_2$. Let $a, b \in R_2$ such that $ab \in I_2$ and $0 \neq i_1 \in I_1$. Then (0, 0) $\neq (i_1, 1)(1, a)(1, b) = (i_1, ab) \in I_1 \times I_2$. Since $(1, a)(1, b) \notin \sqrt{I_1 \times I_2}$, we can conclude that $(i_1, 1)(1, a) \in I_1 \times I_2$ or $(1, i_1)(1, b) \in \sqrt{I_1 \times I_2}$. Then $a \in I_2$ or $b \in \sqrt{I_2}$, that is, I_1 is a primary ideal. Similarly, we assume that $c, d \in R_1$ such that $cd \in I_1$ and $0 \neq i_2 \in I_2$. Hence (0, 0) $\neq (1, i_2)(c, 1)(d, 1) = (cd, i_2) \in I_1 \times I_2$ and as $R_1 \neq I_1$, we have $(c, 1)(d, 1) \notin \sqrt{I_1 \times I_2}$. Then we can conclude that $(1, i_2)(c, 1) \notin I_1 \times I_2$ or $(1, i_2)(d, 1) \in \sqrt{I_1 \times I_2}$. Hence either $c \in I_1$ or $d \in \sqrt{I_1}$ and so I_1 is a primary ideal. Therefore $I_1 \times I_2$ is a 2-absorbing primary ideal of R_1. By Theorem 2.17.

Theorem 4.2. A non-zero ideal I of semiring $(\mathbb{Z}_0^+, \gcd, \text{lcm})$ is 2-absorbing primary ideal if and only if $I = \langle p^n \rangle$ for some positive integer $n > 1$ or $I = \langle p_1^n p_2^m \rangle$ for some pairwise distinct prime numbers p_1, p_2 and some positive integer $n, m > 1$.

Proof. Assume that I is a 2-absorbing primary ideal. Then by Theorem 2.22, I is a 2-absorbing ideal. By [10, Lemma 2.2], $I = \langle d \rangle$ such that $d \in \mathbb{Z}_0^+ \setminus \{0, 1\}$. Set $d = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ where p_1, p_2, \cdots, p_k are pairwise distinct prime. Now we consider $k > 2$. Then $p_1^{r_1} \otimes p_2^{r_2} \otimes (p_3^{r_3} \otimes \cdots \otimes p_k^{r_k}) = d \in I$ so neither $p_1^{r_1} \otimes p_2^{r_2} \in I$ nor
$p_2^{n_2} \otimes (p_3^{n_3} \otimes \cdots \otimes p_k^{n_k}) \in I$ nor $p_1^{n_1} \otimes (p_3^{n_3} \otimes \cdots \otimes p_k^{n_k}) \in I$, that is a contradiction. Hence $k \leq 2$. Therefore $I = < p^n >$ for some positive integer $n > 1$ or $I = < p_1^n p_2^n >$ for some pairwise distinct prime numbers p_1, p_2 and some positive integer $n, m > 1$.

Conversely, if $I = < p_1^n >$ for some positive integer $n > 1$, we are done. So we assume that $I = < p_1^n p_2^n >$ for some pairwise distinct prime numbers p_1, p_2 and some positive integer $n, m > 1$. Then $I = < p_1^n > \cap < p_2^n >$. Since p_1, p_2 are prime numbers, $< p_1^n >$ and $< p_2^n >$ are prime ideals, by [10, Theorem 2.7]. Hence I is a 2-absorbing primary ideal, by Theorem 2.6.

Let $R = (\mathbb{Z}_0^+ \cup \{\infty\}, \max, \min)$ be a semiring with identity ∞, where $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$. Moreover, if I is an ideal of R, then $I = \{0, 1, 2, \cdots, t\}$ for some $t \in \mathbb{Z}_0^+$ or $I = \mathbb{Z}_0^+$ or $I = R$, [13, Theorem 5]. In the next theorem we show that a characterization in semiring $R = (\mathbb{Z}_0^+ \cup \{\infty\}, \max, \min)$.

Theorem 4.3. Every ideal in $R = (\mathbb{Z}_0^+ \cup \{\infty\}, \max, \min)$ is a 2-absorbing primary ideal.

Proof. Let I be a proper ideal of R. Then $I = \{0, 1, 2, \cdots, t\}$ for some $t \in \mathbb{Z}_0^+$ or $I = \mathbb{Z}_0^+$. Assume that $a \land b \land c \in I$ for some $a, b, c \in R$. Hence a or b or $c = \min\{a, b, c\} = a \land b \land c \langle I$. So we can conclude that $a \land b \in I$ or $b \land c \in \sqrt{I}$ or $a \land c \in \sqrt{I}$. Therefore I is a 2-absorbing primary ideal of R.

Acknowledgment. The author is grateful to Professor A. Yousefian Darani for his valuable suggestions and continuous help through out the preparation of this paper.

References

