DOI QR코드

DOI QR Code

Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats

  • Kopalli, Spandana Rajendra (Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Cha, Kyu-Min (Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Jeong, Min-Sik (Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Lee, Sang-Ho (Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Sung, Jong-Hwan (Il Hwa Co., Ltd., Ginseng Research Institute) ;
  • Seo, Seok-Kyo (Department of Obstetrics and Gynecology, Yonsei University College of Medicine) ;
  • Kim, Si-Kwan (Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University)
  • Received : 2015.08.07
  • Accepted : 2015.08.19
  • Published : 2016.04.15

Abstract

Background: To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. Methods: Hydrogen peroxide ($H_2O_2$)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. Results: GINST treatment ($50{\mu}g/mL$, $100{\mu}g/mL$, and $200{\mu}g/mL$) significantly (p < 0.05) inhibited the $H_2O_2$-induced ($200{\mu}M$) cytotoxicity in GC-2spd cells. Furthermore, GINST ($50{\mu}g/mL$ and $100{\mu}g/mL$) significantly (p < 0.05) ameliorated the $H_2O_2$-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-${\alpha}$, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated $H_2O_2$-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. Conclusion: GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.

Keywords

References

  1. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  2. Kopalli SR, Hwang SY, Won YJ, Kim SW, Cha KM, Han CK, Hong JY, Kim SK. Korean red ginseng extract rejuvenates testicular ineffectiveness and sperm maturation process in aged rats by regulating redox proteins and oxidative defense mechanisms. Exp Gerontol 2015;69:94-102. https://doi.org/10.1016/j.exger.2015.05.004
  3. Ramesh T, Kim SW, Sung JH, Hwang SY, Sohn SH, Yoo SK, Kim SK. Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 2012;47:77-84. https://doi.org/10.1016/j.exger.2011.10.007
  4. Won YJ, Kim BK, Shin YK, Jung SH, Yoo SK, Hwang SY, Sung JH, Kim SK. Pectinase-treated Panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol 2014;53:57-66. https://doi.org/10.1016/j.exger.2014.02.012
  5. Choi HK, Seong DH, Rha KH. Clinical efficacy of Korean red ginseng for erectile dysfunction. Int J Impot Res 1995;7:181-6.
  6. Hwang SY, Sohn SH, Wee JJ, Yang JB, Kyung JS, Kwak YS, Kim SW, Kim SK. Panax ginseng improves senile testicular function in rats. J Ginseng Res 2010;34:327-35. https://doi.org/10.5142/jgr.2010.34.4.327
  7. Hwang SY, Kim WJ, Wee JJ, Choi JS, Kim SK. Panax ginseng improves survival and sperm quality in guinea pigs exposed to 2,3,7,8-tetrachlorodibenzo- pdioxin. BJU Int 2004;94:663-8. https://doi.org/10.1111/j.1464-410X.2004.05019.x
  8. Kim YS, Kim JJ, Cho KH, Jung WS, Moon SK, Park EK, Kim DH. Biotransformation of ginsenoside Rb1, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, hesperidin, poncirin, glycyrrhizin, and baicalin by human fecal microflora and its relation to cytotoxicity against tumor cells. J Microbiol Biotechnol 2008;18:1109-14.
  9. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)- ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull 2002;25:58-63. https://doi.org/10.1248/bpb.25.58
  10. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem Pharm Bull (Tokyo) 1991;39:2357-61. https://doi.org/10.1248/cpb.39.2357
  11. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administrationemeasurement of compound K by enzyme immunoassay. Biol Pharm Bull 1998;21:245-9. https://doi.org/10.1248/bpb.21.245
  12. Bae EA, Kim NY, Han MJ, Choo MK, Kim DH. Transformation of ginsenoside to compound k (IH-901) by Lactic acid bacteria of human intestine. J Microbiol Biotech 2003;13:9-14.
  13. Matao K. Metabolism of ginseng saponins, ginsenosides, by human intestinal flora. J Tradit Med 1994;11:241-5.
  14. Hasegawa H, Sung JH, Huh JH. Ginseng intestinal bacterial metabolite IH901 as a new anti-metastatic agent. Arch Pharm Res 1997;20:539-44. https://doi.org/10.1007/BF02975208
  15. Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 1997;63:436-40. https://doi.org/10.1055/s-2006-957729
  16. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-71. https://doi.org/10.1124/dmd.31.8.1065
  17. Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 2000;23:1481-5. https://doi.org/10.1248/bpb.23.1481
  18. Choi YS, Han GC, Han EJ, Park KJ, Sung JH, Chung SY. Effects of compound K on insulin secretion and carbohydrate metabolism. J Ginseng Res 2007;31:79-85. https://doi.org/10.5142/JGR.2007.31.2.079
  19. Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 1998;246:725-30. https://doi.org/10.1006/bbrc.1998.8690
  20. Choi HS, Kim SY, Park Y, Jung EY, Suh HJ. Enzymatic transformation of ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex. J Ginseng Res 2014;38:264-9. https://doi.org/10.1016/j.jgr.2014.05.005
  21. Hasegawa H, Uchiyama M. Antimetastatic efficacy of orally administered ginsenoside Rb1 in dependence on intestinal bacterial hydrolyzing potential and significance of treatment with an active bacterial metabolite. Planta Med 1998;64:696-700. https://doi.org/10.1055/s-2006-957560
  22. Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA. Microbial transformation of ginsenoside Rb(1) by Acremonium strictum. Appl Microbiol Biotechnol 2008;77:1345-50. https://doi.org/10.1007/s00253-007-1258-4
  23. Yu RQ, Yuan JL, Ma LY, Qin QX, Wu XY. Probiotics improve obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats. Zhongguo Dang Dai Er Ke Za Zhi 2013;15:1123-7.
  24. Yuan HD, Quan HY, Jung MS, Kim SJ, Huang B, Kim do Y, Chung SH. Antidiabetic effect of pectinase-processed ginseng radix (GINST) in high fat fietfed ICR mice. J Ginseng Res 2011;35:308-14. https://doi.org/10.5142/jgr.2011.35.3.308
  25. Huo R, He Y, Zhao C, Guo XJ, Lin M, Sha JH. Identification of human spermatogenesis-related proteins by comparative proteomic analysis: a preliminary study. Fertil Steril 2008;90:1109-18. https://doi.org/10.1016/j.fertnstert.2007.07.1342
  26. Aitken RJ. The complexities of conception. Science 1995;269:39-40. https://doi.org/10.1126/science.7604276
  27. Armstrong JS, Rajasekaran M, Chamulitrat W, Gatti P, Hellstrom WJ, Sikka SC. Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radic Biol Med 1999;26:869-80. https://doi.org/10.1016/S0891-5849(98)00275-5
  28. Peris SI, Bilodeau JF, Dufour M, Bailey JL. Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol Reprod Dev 2007;74:878-92. https://doi.org/10.1002/mrd.20686
  29. Bilodeau JF, Blanchette S, Cormier N, Sirard MA. Reactive oxygen speciesmediated loss of bovine sperm motility in egg yolk Tris extender: protection by pyruvate, metal chelators and bovine liver or oviductal fluid catalase. Theriogenology 2002;57:1105-22. https://doi.org/10.1016/S0093-691X(01)00702-6
  30. Garg A, Kumaresan A, Ansari MR. Effects of hydrogen peroxide (H2O2) on fresh and cryopreserved buffalo sperm functions during incubation at 37 degrees C in vitro. Reprod Domest Anim 2009;44:907-12. https://doi.org/10.1111/j.1439-0531.2008.01115.x
  31. Zirkin BR, Chen H. Regulation of Leydig cell steroidogenic function during aging. Biol Reprod 2000;63:977-81. https://doi.org/10.1095/biolreprod63.4.977
  32. Syntin P, Robaire B. Sperm structural and motility changes during aging in the Brown Norway rat. J Androl 2001;22:235-44.
  33. Cao L, Leers-Sucheta S, Azhar S. Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol 2004;88:61-7. https://doi.org/10.1016/j.jsbmb.2003.10.007
  34. Luo L, Chen H, Trush MA, Show MD, Anway MD, Zirkin BR. Aging and the brown Norway rat leydig cell antioxidant defense system. J Androl 2006;27:240-7. https://doi.org/10.2164/jandrol.05075
  35. Mueller A, Hermo L, Robaire B. The effects of aging on the expression of glutathione S-transferases in the testis and epididymis of the Brown Norway rat. J Androl 1998;19:450-65.
  36. Sastre J, Pallardo FV, Vina J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 2000;49:427-35. https://doi.org/10.1080/152165400410281
  37. Park EH, Chang MS, Kil KJ, Park SK. The antioxidant activity of nelumbinis stamen in GC-2 spd(ts) cells. Korea J Herbol 2012;27:15-20.
  38. Oh MS, Kim DR, Kim SY, Chang MS, Park SK. Antioxidant effects of psoraleae fructus in GC-1 cells. Kor J Ori Med Physiol Pathol 2005;19:81-6.
  39. du Plessis SS, McAllister DA, Luu A, Savia J, Agarwal A, Lampiao F. Effects of H(2)O(2) exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia 2010;42:206-10. https://doi.org/10.1111/j.1439-0272.2009.00980.x
  40. O'Flaherty CM, Beorlegui NB, Beconi MT. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 1999;52:289-301. https://doi.org/10.1016/S0093-691X(99)00129-6
  41. Com E, Evrard B, Roepstorff P, Aubry F, Pineau C. New insights into the rat spermatogonial proteome: identification of 156 additional proteins. Mol Cell Proteomics 2003;2:248-61. https://doi.org/10.1074/mcp.M300010-MCP200
  42. Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 2009;419:149-58. https://doi.org/10.1042/BJ20081526
  43. Wonsey DR, Zeller KI, Dang CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci U S A 2002;99:6649-54. https://doi.org/10.1073/pnas.102523299
  44. Zhang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM. Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 1997;272:30615-8. https://doi.org/10.1074/jbc.272.49.30615
  45. Lee CK, Kim HJ, Lee YR, So HH, Park HJ, Won KJ, Park T, Lee KY, Lee HM, Kim B. Analysis of peroxiredoxin decreasing oxidative stress in hypertensive aortic smooth muscle. Biochim Biophys Acta 2007;1774:848-55. https://doi.org/10.1016/j.bbapap.2007.04.018
  46. Rao AV, Shaha C. Role of glutathione S-transferases in oxidative stressinduced male germ cell apoptosis. Free Radic Biol Med 2000;29:1015-27. https://doi.org/10.1016/S0891-5849(00)00408-1
  47. Fulcher KD, Welch JE, Klapper DG, O'Brien DA, Eddy EM. Identification of a unique mu-class glutathione S-transferase in mouse spermatogenic cells. Mol Reprod Dev 1995;42:415-24. https://doi.org/10.1002/mrd.1080420407
  48. Thomas JP, Geiger PG, Maiorino M, Ursini F, Girotti AW. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta 1990;1045:252-60. https://doi.org/10.1016/0005-2760(90)90128-K
  49. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohe L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999;285:1393-6. https://doi.org/10.1126/science.285.5432.1393
  50. Morrison ME, Racaniello VR. Molecular cloning and expression of a murine homolog of the human poliovirus receptor gene. J Virol 1992;66:2807-13.
  51. Mueller S, Rosenquist TA, Takai Y, Bronson RA, Wimmer E. Loss of nectin-2 at Sertoli-spermatid junctions leads to male infertility and correlates with severe spermatozoan head and midpiece malformation, impaired binding to the zona pellucida, and oocyte penetration. Biol Reprod 2003;69:1330-40. https://doi.org/10.1095/biolreprod.102.014670
  52. Bouchard MJ, Dong Y, McDermott Jr BM, Lam DH, Brown KR, Shelanski M, Bellve AR, Racaniello VR. Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Mol Cell Biol 2000;20:2865-73. https://doi.org/10.1128/MCB.20.8.2865-2873.2000
  53. Hsueh AJ, Dahl KD, Vaughan J, Tucker E, Rivier J, Bardin CW, Vale W. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci U S A 1987;84:5082-6. https://doi.org/10.1073/pnas.84.14.5082
  54. Cai K, Hua G, Ahmad S, Liang A, Han L, Wu C, Yang F, Yang L. Action mechanism of inhibin alpha-subunit on the development of Sertoli cells and first wave of spermatogenesis in mice. PLoS One 2011;6:e25585. https://doi.org/10.1371/journal.pone.0025585
  55. Don J, Stelzer G. The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis. Mol Cell Endocrinol 2002;187:115-24. https://doi.org/10.1016/S0303-7207(01)00696-7
  56. Kim JS, Song MS, Seo HS, Yang M, Kim SH, Kim JC, Kim H, Saito TR, Shin T, Moon C. Immunohistochemical analysis of cAMP response element-binding protein in mouse testis during postnatal development and spermatogenesis. Histochem Cell Biol 2009;131:501-7. https://doi.org/10.1007/s00418-009-0554-8
  57. Sodersten P, Gustafsson JA. A way in which estradiol might play a role in the sexual behavior of male rats. Horm Behav 1980;14:271-4. https://doi.org/10.1016/0018-506X(80)90035-5
  58. Engelking LR. Metabolic and endocrine physiology. Wyoming, USA: New-Media T; 2000.
  59. Huleihel M, Lunenfeld E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl 2004;6:259-68.

Cited by

  1. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging vol.8, pp.6, 2017, https://doi.org/10.14336/ad.2017.0707
  2. Has aidi injection the attenuation and synergistic efficacy to gemcitabine and cisplatin in non-small cell lung cancer? A meta-analysis of 36 randomized controlled trials vol.8, pp.1, 2017, https://doi.org/10.18632/oncotarget.13617
  3. Korean red ginseng improves testicular ineffectiveness in aging rats by modulating spermatogenesis-related molecules vol.90, pp.None, 2016, https://doi.org/10.1016/j.exger.2017.01.020
  4. Pectinase-treated Panax ginseng protects heat stress-induced testicular damage in rats vol.153, pp.6, 2016, https://doi.org/10.1530/rep-16-0560
  5. The effects of phenolic glycosides from Betula platyphylla var. japonica on adipocyte differentiation and mature adipocyte metabolism vol.33, pp.1, 2018, https://doi.org/10.1080/14756366.2018.1491846
  6. Ginseng for improving semen quality parameters : A protocol of systematic review vol.97, pp.4, 2016, https://doi.org/10.1097/md.0000000000009732
  7. Chemical Characterization of a Renoprotective Metabolite from Termite-Associated Streptomyces sp. RB1 against Cisplatin-Induced Cytotoxicity vol.19, pp.1, 2016, https://doi.org/10.3390/ijms19010174
  8. Hypoxia‐induced apoptosis of mouse spermatocytes is mediated by HIF‐1α through a death receptor pathway and a mitochondrial pathway vol.233, pp.2, 2016, https://doi.org/10.1002/jcp.25974
  9. 7α,15-Dihydroxydehydroabietic acid from Pinus koraiensis inhibits the promotion of angiogenesis through downregulation of VEGF, p-Akt and p-ERK in HUVECs vol.28, pp.6, 2018, https://doi.org/10.1016/j.bmcl.2018.02.014
  10. TANK‐binding kinase 1 and Janus kinase 2 play important roles in the regulation of mitogen‐activated protein kinase phosphatase‐1 expression after toll‐like receptor 4 activati vol.233, pp.11, 2018, https://doi.org/10.1002/jcp.26787
  11. Tirucallane Triterpenoids from the Stems and Stem Bark of Cornus walteri that Control Adipocyte and Osteoblast Differentiations vol.23, pp.11, 2016, https://doi.org/10.3390/molecules23112732
  12. Ginseng Nanoparticles Protect Against Methotrexate-Induced Testicular Toxicity in Rats vol.9, pp.None, 2016, https://doi.org/10.32527/2019/101397
  13. Shengjing Capsule Improves Spermatogenesis through Upregulating Integrin α6/β1 in the NOA Rats vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/8494567
  14. Cordycepin, an Active Constituent of Nutrient Powerhouse and Potential Medicinal Mushroom Cordyceps militaris Linn., Ameliorates Age-Related Testicular Dysfunction in Rats vol.11, pp.4, 2019, https://doi.org/10.3390/nu11040906
  15. Ameliorating impacts of ginseng on the apoptosis of spermatogenic cells and sperm quality in temporal lobe epilepsy rat model treated with valproate vol.51, pp.9, 2016, https://doi.org/10.1111/and.13348
  16. Epigallocatechin Exerts Anti‐Obesity Effect in Brown Adipose Tissue vol.16, pp.10, 2016, https://doi.org/10.1002/cbdv.201900347