DOI QR코드

DOI QR Code

Automated Areal Feature Matching in Different Spatial Data-sets

이종의 공간 데이터 셋의 면 객체 자동 매칭 방법

  • Kim, Ji Young (Institute of Construction and Environmental Engineering(ICEE), Seoul National University) ;
  • Lee, Jae Bin (Dept. of Civil Engineering, Mokpo National University)
  • 김지영 (서울대학교 건설환경종합연구소) ;
  • 이재빈 (국립목포대학교 공과대학 토목공학과)
  • Received : 2016.02.24
  • Accepted : 2016.03.15
  • Published : 2016.03.31

Abstract

In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.

본 연구에서는 축척과 갱신 주기가 상이한 이종의 공간 데이터 셋을 융합하기 위하여 사용자의 개입을 최소화하면서 다대다 관계에도 적용이 가능한 기하학적 방법론 기반의 면 객체 자동 매칭 방법을 제안하였다. 이를 위하여 첫째, 포함함수가 0.4 이상인 객체(노드)는 인접행렬에서 에지로 연결되었고, 이들 인접행렬의 곱을 반복적으로 수행하여 다대다 관계를 포함하는 후보 매칭 쌍을 선정하였다. 다대다 관계인 면 객체들은 알고리즘으로 생성된 convex hull로 단일 면 객체로 변환하였다. 기하학적 매칭을 위하여, 매칭 기준을 설정하고, 이들을 유사도 함수를 이용하여 유사도를 계산하였다. 다음으로 변환된 유사도와 CRITIC 방법으로 도출된 가중치를 선형 조합하여 형상 유사도를 계산하였다. 마지막으로 훈련자료에서 모든 가중치에 대한 정확도와 재현율을 나타낸 PR 곡선의 교차점인 EER로 임계값을 선정하고, 이 임계값을 기준으로 매칭 유무를 판별하였다. 제안된 방법을 수치지도와 도로명 주소기본도에 적용한 결과, 일부 다대다 관계에서 잘못 매칭되는 경우를 시각적으로 확인할 수 있었으나, 통계적 평가에서 정확도, 재현율, F-measure가 각각 0.951, 0.906, 0.928로 높게 나타났다. 이는 제안된 방법으로 이종의 공간 데이터 셋을 자동으로 매칭하는데 그 정확도가 높음을 의미한다. 그러나 일부 오류가 발생한 다대다 관계인 후보 매칭 쌍을 정확하게 정량화하기 위해서 포함함수나 매칭 기준에 대한 연구가 진행되어야 할 것이다.

Keywords

References

  1. Beeri, C., Doytsher, Y., Kanza, Y., Safra, E. and Sagiv, Y., 2005, Finding corresponding objects when integrating several geo-spatial datasets, Proc. of the 13th annual ACM international workshop on Geographic information systems, ACM, New York, USA, pp. 87-96.
  2. Beeri, C., Kanza, Y., Safra, E. and Sagiv, Y., 2004, Object fusion in geographic information systems. Proc. of the 13th International Conference on Very Large Data Bases(VLDB 2004), Morgan Kaufmann, Toronto, Canada, pp. 816-827.
  3. Bel Hadj Ali, A., 2001, Positional and shape quality of areal entities in geographic databases: quality information aggregation versus measures classification, Proc. of ECSQARU 2001 workshop on Spatiotemporal reasoning and geographic information systems, Toulouse, France, pp. 1-16.
  4. Bel Hadj Ali, A., 2002, Moment representation of polygons for the assessment of their shape quality, Journal of Geographical Systems, Vol. 4, No. 2, pp 209-232. https://doi.org/10.1007/s101090100067
  5. Bengio, S., Marethoz, J. and Keller, M., 2005, The expected performance curve, Proc. of the ICML'05 workshop on ROC analysis in machine learning, Bonn, Germany, pp. 43-50.
  6. Davis, J. and Goadrich, M., 2006, The relationship between precision-recall and ROC curves, Proc. of the 23rd International Conference on Machine Learning(ICML 2006), Pittsbrugh, USA, pp. 233-240.
  7. Diakoulaki, D., Mavrotas, G. and Papayannakis, L., 1995, Determing objective weights in multiple criteria problems: the CRITIC method, Computers & Operational Research, Vol. 22, No. 7, pp. 763-770. https://doi.org/10.1016/0305-0548(94)00059-H
  8. Duckham, M. and Worboys, M., 2005, An algebraic approach to automated geospatial information fusion, International Journal of Geographical Information Science, Vol. 19, No. 5, pp. 537-557. https://doi.org/10.1080/13658810500032339
  9. Fu, Z. and Wu, J., 2008, Entity matching in vector spatial data, Proc. of the XXIth ISPRS Congress, ISPRS, Beijing, China, pp. 1467-1472.
  10. Guo, L., Cui, T., Zheng, H. and Wang, H., 2008, Arithmetic for area vector spatial data matching on spatial direction similarity, Journal of Geomatics Science and Technology, Vol. 25, No. 5, pp. 380-382.
  11. Huang, L., Wang, S., Ye, Y., Wang, B. and Wu, L., 2010, Feature matching in cadastral map integration with a case study of Beijing, Proc. of 2010 18th International Conference on Geoinformatics, IEEE, Beijing, China, pp. 1-4.
  12. Huff, D. A. and Batsell, R.R., 1977, Delimiting the areal extent of a market area, Journal of Marketing Research, Vol.15, pp. 581-585.
  13. Kim, J., Huh, Y., Kim, D. S. and Yu, K., 2011, A new method of automatic areal feature matching based on shape similarity using CRITIC method, Journal of the Korean Society of Surveying, Vol. 29, No. 2, pp. 113-121.
  14. Kokla, M., 2006, Guidelines on geographic ontology integration, Proc. of the ISPRS technical commission II symposium, ISPRS, Vienna, Austria, pp. 67-72.
  15. Liu, Z., 2006, The research on areal feature matching among the conflation of urban geographic databases, Master's thesis, University of Wuhan.
  16. Safra, E., Kanza, Y., Sagiv, Y. and Doytsher, Y., 2006, Integrating Data from Maps on the World-Wide Web, Proc. of the 6th International Symposium on Web and Wireless Geographical Information Systems(W2GIS 2016), Springer LNCS 4295, Hong Kong, China, pp. 180-191.
  17. Safra, E.., Kanzab, Y., Sagiv, Y., Beeri, C. and Doytsher, Y., 2010, Location-based algorithms for finding sets of corresponding objects over several geo-spatial data sets, International Journal of Geographical Information Science, Vol. 24, No. 1, pp. 69-106. https://doi.org/10.1080/13658810802275560
  18. Samal, A., Seth, S. and Cueto, K., 2004, A feature-based approach to conflation of geospatial sources, International Journal of Geographical Information science, Vol. 18, No. 5, pp. 459-489. https://doi.org/10.1080/13658810410001658076
  19. Shao, S. and Tong, C., 2010, A Matching method for multi-characteristic vector elements of complex polygon, 2010 International Conference on Multimedia Technology (ICMT), IEEE, Ningbo, China, pp. 1-4.
  20. Tong, X., Shi, W. and Deng, S., 2009, A probability-based multi-measure feature matching method in map conflation, International Journal of Remote Sensing, Vol. 30, No. 20, pp. 5453-5472. https://doi.org/10.1080/01431160903130986
  21. Wang, Y. and Luo, Y., 2010, Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making, Mathematical and Computer Modelling, Vol. 51, pp. 1-12. https://doi.org/10.1016/j.mcm.2009.07.016
  22. von Goesseln, G. and Sester, M., 2003, Change detection and integration of topographic updates from ATKIS to geoscientific data sets. Proc. of International Conference on Next Generation Geospatial Information, Boston, USA, pp. 69-80.
  23. Wenjing, T., Yanling, H., Yuxin, Z. and Ning, L., 2008, Research on areal feature matching algorithm based on spatial similarity, Proc. of Chinese Control and Decision Conference(2008 CCDC), IEEE, Yantai, China, pp. 3326-3330.
  24. Yatskevich, M., Giunchiglia, F. and Avesani, P., 2007, A large scale dataset for the evaluation of matching systems, Proc. of 4th European Semantic Web Conference, http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.8240
  25. Zhang, Q., 2002, Research on feature matching and conflation of geographic databases, Doctoral thesis, University of Wuhan.