DOI QR코드

DOI QR Code

대기 누출 방사성물질 선원 위치 추적을 위한 3차원 궤적모델 개발

Development of Three-Dimensional Trajectory Model for Detecting Source Region of the Radioactive Materials Released into the Atmosphere

  • Suh, Kyung-Suk (Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Kihyun (Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Min, Byung-Il (Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Sora (Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Yang, Byung-Mo (Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2015.11.23
  • 심사 : 2016.02.25
  • 발행 : 2016.03.31

초록

연구배경: 우리나라를 포함한 중국, 대만, 북한, 일본 등에서 원전, 재처리시설과 같은 원자력시설의 증가에 따라 주변국 핵활동 분석의 종합적 대책이 필요하다. 우리나라와 포괄적핵실험금지조약기구(Comprehensive Nuclear-Test-Ban Treaty Organization, CTBTO)는 동북아시아 지역에서 핵종 탐지소를 운영 중으로, 핵종탐지 장비에서 특이 값 측정시 모니터링 자료의 분석과 더불어 배출원 탐색모델을 이용하여 핵종의 기원이 어디인지 추정하고 평가하는 것은 주변국 핵활동에 대한 감시 및 안전성 확보 측면에서 중요하다. 재료 및 방법: 주변국의 은밀한 핵활동 시 방사성핵종의 기원을 추정하기 위하여 3차원 전진/후진형 궤적모델을 개발하였다. 개발된 궤적모델은 궤적 미분방정식을 유한차분법을 이용한 방법으로 주어진 바람자료를 이용하여 방사성핵종의 방출지점으로부터 입자의 궤적을 순차적으로 찾아가는 전진형 모델과 시간 역산으로 방출기원을 추정하는 후진형 모델로 구성되었다. 결과 및 논의: 개발된 궤적모델의 검증을 위하여 체르노빌 사고 당시 측정된 농도자료를 이용하였다. 검증결과 관측지점의 농도가 높게 측정된 지점과 방출기원에서 가까운 지역으로부터 시간 역산의 방출지점을 추정한 결과의 정확도가 높았다. 3차원 궤적모델은 방출시간, 방출높이, 방출간격 등의 변수에 의해 계산결과가 달라지는 불확도를 내포하고 있는데, 이러한 궤적모델의 불확도를 최소화하기 위해 한국원자력연구원에서 개발한 대기확산모델(long-range accident dose assessment system, LADAS)를 이용하여 fields of regards (FOR) 기법에 의해 오염물 방출영역을 추정한바 신뢰성 있는 결과를 얻었다. 결론: 본 연구를 통하여 개발된 배출원 탐색모델은 주변국의 은밀한 핵활동 시 핵종 탐지장비와 연계하여 방사성핵종의 방출지역과 기원을 파악하여 우리나라의 핵종탐지 능력을 향상하고 핵활동 및 방사선 안전 분야에서 주도적 역할을 할 수 있을 것으로 생각된다.

Background: It is necessary to consider the overall countermeasure for analysis of nuclear activities according to the increase of the nuclear facilities like nuclear power and reprocessing plants in the neighboring countries including China, Taiwan, North Korea, Japan and South Korea. South Korea and comprehensive nuclear-test-ban treaty organization (CTBTO) are now operating the monitoring instruments to detect radionuclides released into the air. It is important to estimate the origin of radionuclides measured using the detection technology as well as the monitoring analysis in aspects of investigation and security of the nuclear activities in neighboring countries. Materials and methods: A three-dimensional forward/backward trajectory model has been developed to estimate the origin of radionuclides for a covert nuclear activity. The developed trajectory model was composed of forward and backward modules to track the particle positions using finite difference method. Results and discussion: A three-dimensional trajectory model was validated using the measured data at Chernobyl accident. The calculated results showed a good agreement by using the high concentration measurements and the locations where was near a release point. The three-dimensional trajectory model had some uncertainty according to the release time, release height and time interval of the trajectory at each release points. An atmospheric dispersion model called long-range accident dose assessment system (LADAS), based on the fields of regards (FOR) technique, was applied to reduce the uncertainties of the trajectory model and to improve the detective technology for estimating the radioisotopes emission area. Conclusion: The detective technology developed in this study can evaluate in release area and origin for covert nuclear activities based on measured radioisotopes at monitoring stations, and it might play critical tool to improve the ability of the nuclear safety field.

키워드

참고문헌

  1. Geer L. Radionuclide evidence for low-yield nuclear testing in North Korea in April/May 2010. Science and Global Security. 2012;20:1-29. https://doi.org/10.1080/08929882.2012.652558
  2. Draxler R. Evaluation of an ensemble dispersion calculation. J. Appl. Meteorol. 2003;42:308-317. https://doi.org/10.1175/1520-0450(2003)042<0308:EOAEDC>2.0.CO;2
  3. Tinker R, Orr B, Grzechnik M, Hoffma E, Saey P, Solomon S. Evaluation of radioxenon releases in Australia using atmospheric dispersion modelling tools. J. Environ. Radioact. 2010; 101(5):353-361. https://doi.org/10.1016/j.jenvrad.2010.02.003
  4. Bocquet M, Wua L, Chevallierc F. Bayesian design of control space for optimal assimilation of observations. Part I: Consistent multiscale formalism. Q. J. R. Meteorolog. Soc. 2011;137(658):1340-1356. https://doi.org/10.1002/qj.837
  5. Mukherjee C, Kasibhatla P. S., West M. Bayesian statistical modeling of spatially correlated error structure in atmospheric tracer inverse analysis. Atmos. Chem. Phys. 2011;11:5365-5382. https://doi.org/10.5194/acp-11-5365-2011
  6. Nasstrom JS, Sugiyama G, Leone JM, Ermak DL. A real-time atmospheric dispersion modeling system. UCRL-JC-135120. Lawrence Livermore National Laboratory, Livermore, CA, 1993; 1-8.
  7. Furuno A, Terada H, Chino M, Yamazawa H. Experimental verification for real-time environmental emergency response system; WSPEEDI by European tracer experiment. Atmos. Environ. 2004;38:6989-6998. https://doi.org/10.1016/j.atmosenv.2004.02.074
  8. Erhart J, Sauer J, Schule O, Benz G, Rafat M, Richter J. Development of RODOS, a comprehensive decision support system for nuclear emergencies in European overview. Radiat. Prot. Dosim. 1993;50:195-203. https://doi.org/10.1093/oxfordjournals.rpd.a082089
  9. Wotawa G. Meteorological analysis of the spring-2010 radionuclide measurements in Eastern Asia. EGU2012-9463. European Geosciences Union, Vienna, Austria 2012;9463.
  10. Korea Institute of Nuclear Safety. Functionality advancement of AtomCARE. KINS/GR-509. Daejeon, Republic of Korea. 2013;2:1-112.
  11. Suh KS, Jeong HJ, Kim EH, Hwang WT, Han MH. Verification of the Lagrangian particle model using the ETEX experiment. Annals of Nuclear Energy. 2006;33:1159-1163. https://doi.org/10.1016/j.anucene.2006.08.005
  12. Seibert P. Convergence and accuracy of numerical methods for trajectory calculation. J. Appl. Meteorol. 1993;32:558-566. https://doi.org/10.1175/1520-0450(1993)032<0558:CAAONM>2.0.CO;2
  13. Klug W, graziani G, Grippa G, Pierece D, Tassone C. Evaluation of long range atmospheric transport models using environmental radioactivity data from the Chernobyl accident. EUR 14148 EN. Luxembourge, Luxembourge . Commission of the European Communities. 1992;1-366.
  14. Wotawa G, et al. Atmospheric transport modelling in support of CTBT verification-overview and basic concepts. Atmos. Environ. 2003;37:2529-2537. https://doi.org/10.1016/S1352-2310(03)00154-7