DOI QR코드

DOI QR Code

Effects of Combined Chlorine Dioxide Gas Treatment Using Low-Concentration Generating Sticks on the Microbiological Safety and Quality of Paprika during Storage

저농도 서방형 이산화염소 가스 병합처리가 파프리카의 저장 중 미생물 성장과 품질에 미치는 영향

  • Received : 2015.12.08
  • Accepted : 2016.02.16
  • Published : 2016.04.30

Abstract

Chlorine dioxide ($ClO_2$) gas treatment (75 ppmv, 30 min) has been suggested to improve the microbial safety of postharvest paprika in a previous study. Based on these results, in this study, an additional combined treatment using low-concentration $ClO_2$ gas-generating sticks (3 ppmv) in paprika samples during storage was carried out at $8^{\circ}C$ and 90% relative humidity to further enhance the quality and reduce the decay rate of paprika for the purpose of lengthy storage. After the combined treatment, the initial populations of total aerobic bacteria as well as yeast and molds in the paprika samples decreased by 3.04 and 2.70 log CFU/g, respectively, compared with those of the control samples, and this microbial inactivation was maintained by the low-concentration $ClO_2$ gas-generating sticks during storage. In particular, the decay rate of samples with combined treatment was significantly lower than that of the control. Vitamin C content, hardness, and color quality parameters of paprika samples were not altered by treatment, while weight loss of the samples treated with the combined $ClO_2$ gas was lower than that of the control during storage. These results indicate that the combination of two different $ClO_2$ gas treatments is effective for retaining the quality of paprika during prolonged storage.

이전 연구에서 이산화염소 가스 훈증처리가 수확 후 파프리카의 미생물학적 안전성을 향상할 수 있다고 보고한 바 있다. 이에 관한 후속 연구로써 본 연구에서는 파프리카의 장기 저장성 확보를 목적으로 저장 중 품질 유지와 부패 감소를 위해 고농도 이산화염소 가스 처리된 파프리카를 $8{\pm}1^{\circ}C$, 상대습도 90%의 조건에서 저장하면서 저농도 서방형 이산화염소 가스 발생제(팜이톡, 3 ppmv)를 이용한 추가적인 병합처리를 수행하였다. 저장 초기 이산화염소 가스 병합처리구의 총 호기성 세균은 대조구와 비교하여 3.04 log CFU/g의 감소를 했고, 효모와 곰팡이는 2.70 log CFU/g의 감소를 나타내었으며, 이러한 이산화염소 가스 병합처리의 미생물 저감 효과는 저농도 서방형 이산화염소 가스 발생제 처리로 저장 기간 유지되었다. 특히, 부패율에서 병합처리구가 대조구보다 유의적으로 낮았다. 파프리카의 품질 변화지표(비타민 C 함량, 경도, 색도)와 관련하여 이산화염소 가스 병합처리구와 대조구 모두 저장 기간 차이를 나타내지 않았으나, 저장 중 중량감소율은 병합처리구가 대조구보다 낮은 수준을 유지하였다. 따라서 본 연구 결과, 수확 후 파프리카에 두 가지 형태의 이산화염소 가스를 병합처리 하는 것이 단일처리보다 저장과 유통과정 중 파프리카의 품질을 유지하면서 부패율을 낮출 수 있는 더 효과적인 처리 방법이라고 판단된다.

Keywords

References

  1. Park HW, Kim SH, Lee SA. 2011. Freshness of paprika packed with PLA films. Korean J Packag Sci Technol 17: 7-11.
  2. Kim HE, Hwang MR, Eom JH, Choi HG, Kang NJ. 2014. Effects of methyl jasmonate on shelf life of paprika. J Agric Life Sci 48: 19-25. https://doi.org/10.14397/jals.2014.48.5.19
  3. Choi IL, Yoo TJ, Kim IS, Lee YB, Kang HM. 2011. Effect of non-perforated breathable films on the quality and shelf life of paprika during MA storage in simulated long distance export condition. J Bio-Environ Control 20: 150-155.
  4. Kang JH, Park SM, Kim HG, Son HJ, Song KJ, Cho MA, Kim JR, Lee JY, Song KB. 2015. Gaseous chlorine dioxide treatment to produce high quality paprika for export. J Korean Soc Food Sci Nutr 44: 1072-1078. https://doi.org/10.3746/jkfn.2015.44.7.1072
  5. Choi IL, Lee YB, Kim IS, Kang HM. 2012. A comparison of the storability in MA storage and the quality of paprika fruit among cultivars. J Bio-Environ Control 21: 252-260.
  6. Hong HJ, Kim AJ, Park HR, Shin JK. 2013. Changes in physicochemical properties of paprika by intense pulsed light treatment. Korean J Food Sci Technol 45: 339-344. https://doi.org/10.9721/KJFST.2013.45.3.339
  7. Park SH, Kang DH. 2015. Antimicrobial effect of chlorine dioxide gas against foodborne pathogens under differing conditions of relative humidity. LWT-Food Sci Technol 60: 186-191. https://doi.org/10.1016/j.lwt.2014.09.031
  8. Gomez-Lopez VM, Rajkovic A, Ragaert P, Smigic N, Devlieghere F. 2009. Chlorine dioxide for minimally processed produce preservation: a review. Trends Food Sci Tech 20: 17-26. https://doi.org/10.1016/j.tifs.2008.09.005
  9. Lee JH, Kwak YS. 2013. The microflora and pathogenicity investigation related paprika postharvest disease. J Agric Life Sci 47: 55-60.
  10. Guo Q, Wu B, Peng X, Wang J, Li Q, Jin J, Ha Y. 2014. Effects of chlorine dioxide treatment on respiration rate and ethylene synthesis of postharvest tomato fruit. Postharvest Biol Tec 93: 9-14. https://doi.org/10.1016/j.postharvbio.2014.01.013

Cited by

  1. Distribution, Identification, and Quantification of Residues after Treatment of Ready-To-Eat Salami with36Cl-Labeled or Nonlabeled Chlorine Dioxide Gas vol.64, pp.44, 2016, https://doi.org/10.1021/acs.jafc.6b04011
  2. Quality Changes of Lentinula edodes GNA01 Mushroom by Choline Dioxide Gas Treatment during Storage vol.29, pp.4, 2016, https://doi.org/10.9799/ksfan.2016.29.4.499
  3. Combined Treatment with Low Concentrations of Aqueous and Gaseous Chlorine Dioxide Inactivates Escherichia coli O157:H7 and Salmonella Typhimurium Inoculated on Paprika vol.27, pp.3, 2016, https://doi.org/10.4014/jmb.1611.11038
  4. 서방형 이산화염소 가스 젤팩을 이용한 딸기의 저장 중 품질 변화 vol.30, pp.3, 2016, https://doi.org/10.9799/ksfan.2017.30.3.591
  5. 이산화염소 가스 훈증 처리에 따른 곶감의 미생물학적 변화 및 품질특성 vol.24, pp.5, 2016, https://doi.org/10.11002/kjfp.2017.24.5.608